Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
ActiveClassification
  • See Also
    • Classify
    • ActiveClassificationObject
    • BayesianMinimization
    • BayesianMaximization
  • Related Guides
    • Supervised Machine Learning
    • See Also
      • Classify
      • ActiveClassificationObject
      • BayesianMinimization
      • BayesianMaximization
    • Related Guides
      • Supervised Machine Learning

ActiveClassification[f,{conf1,conf2,…}]

gives an object representing the result of active classification obtained by using the function f to determine classes for the example configurations confi.

ActiveClassification[f,reg]

generates configurations within the region specified by reg.

ActiveClassification[f,sampler]

generates configurations by applying the function sampler.

ActiveClassification[f,{conf1,conf2,…}nsampler]

applies the function nsampler to successively generate configurations starting from one of the confi.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Options  
InitialEvaluationHistory  
MaxIterations  
Method  
Applications  
Grade Classifier  
Region Member Classifier  
Program Choice Classifier  
Possible Issues  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • Classify
    • ActiveClassificationObject
    • BayesianMinimization
    • BayesianMaximization
  • Related Guides
    • Supervised Machine Learning
    • See Also
      • Classify
      • ActiveClassificationObject
      • BayesianMinimization
      • BayesianMaximization
    • Related Guides
      • Supervised Machine Learning

ActiveClassification

ActiveClassification[f,{conf1,conf2,…}]

gives an object representing the result of active classification obtained by using the function f to determine classes for the example configurations confi.

ActiveClassification[f,reg]

generates configurations within the region specified by reg.

ActiveClassification[f,sampler]

generates configurations by applying the function sampler.

ActiveClassification[f,{conf1,conf2,…}nsampler]

applies the function nsampler to successively generate configurations starting from one of the confi.

Details and Options

  • ActiveClassification[…] returns an ActiveClassificationObject[…] whose properties can be obtained using ActiveClassificationObject[…]["prop"].
  • Possible properties include:
  • "EvaluationHistory"configurations explored and classes assigned to them
    "Method"method used for active classification
    "ClassifierFunction"best ClassifierFunction[…] obtained
    "ClassifierMeasurementsObject"latest ClassifierMeasurementsObject[…] obtained
    "LearningCurve"plot of mean cross-entropy evolution
    "Properties"list of all available properties
  • Configurations can be of any form accepted by Classify (single data element, list of data elements, association of data elements, etc.) and of any type accepted by Classify (numerical, textual, sounds, images, etc.).
  • When applied to a configuration conf, the output of the function f is interpreted as a label.
  • In ActiveClassification[f,spec], spec defines the domain of the function f. A domain can be defined by a list of configurations, a geometric region or a configuration generator function.
  • In ActiveClassification[f,sampler], sampler[] must output a configuration suitable for f to be applied to it.
  • In ActiveClassification[f,{conf1,conf2,…}nsampler], nsampler[conf] must output a configuration.
  • ActiveClassification has the same options as Classify, with the following additions and changes: [List of all options]
  • InitialEvaluationHistory Noneinitial set of configurations and classes
    MaxIterations 2000maximum number of iterations
    Method Automaticmethod used to determine configurations to query and the classification algorithm to use
    RandomSeeding1234what seeding of pseudorandom generators should be done internally
  • Possible settings for Method include:
  • Automaticautomatically choose method
    "Randomized"choose random configurations from the domain
    "MaxEntropy"choose configurations for which the classifier has maximum uncertainty
    assocassociation specifying the evaluation strategy and classification method
  • In the form Methodassoc, the association can have elements:
  • "EvaluationStrategy"method for determining which configurations to query
    "ClassificationMethod"method to use for classification
  • Possible settings for RandomSeeding include:
  • Automaticautomatically reseed every time the function is called
    Inheriteduse externally seeded random numbers
    seeduse an explicit integer or strings as a seed
  • List of all options

    • AcceptanceThresholdAutomaticrarer-probability threshold for anomaly detector
      AnomalyDetectorNoneanomaly detector used by the classifier
      ClassPriorsAutomaticexplicit prior probabilities for classes
      FeatureExtractorIdentityhow to extract features from which to learn
      FeatureNamesAutomaticfeature names to assign for input data
      FeatureTypesAutomaticfeature types to assume for input data
      IndeterminateThreshold0below what probability to return Indeterminate
      InitialEvaluationHistoryNoneinitial set of configurations and classes
      MaxIterations2000maximum number of iterations
      MethodAutomaticmethod used to determine configurations to query and the classification algorithm to use
      MissingValueSynthesisAutomatichow to synthesize missing values
      PerformanceGoalAutomaticaspects of performance to try to optimize
      RandomSeeding1234what seeding of pseudorandom generators should be done internally
      RecalibrationFunctionAutomatichow to post-process class probabilities
      TargetDevice"CPU"the target device on which to perform training
      TimeGoalAutomatichow long to spend training the classifier
      TrainingProgressReportingAutomatichow to report progress during training
      UtilityFunctionAutomaticutility as function of actual and predicted class
      ValidationSetAutomaticthe set of data on which to evaluate the model during training

Examples

open all close all

Basic Examples  (3)

Train an ActiveClassificationObject[…] to classify whether an integer is greater than 50:

Extract the resulting classifier:

Classify new examples:

Train a classification object with the domain defined by an interval:

Extract the classifier:

Classify new examples:

Train a classification object to classify whether a matrix is positive semidefinite, with the domain defined by a configuration generator:

Extract the classifier:

Classify new examples:

Scope  (2)

Define a piecewise function with three possible output values:

Train a classification object to classify the possible outputs from the function, with the domain defined by a configuration generator:

Obtain the list of object properties:

Obtain the history of explored configurations:

Obtain the classifiers trained during the active classification, along with their properties:

Obtain the final classifier:

Obtain the method used to choose configurations to add to the training set:

Obtain some other properties:

Display the performances of the classifiers trained during active classification:

Display the confusion matrix of the final classifier for a test set:

Define a function that checks whether a point belongs to a given region, then define a neighborhood configuration generator:

Train a classification object to classify whether a point is a member of a given region:

Display the confusion matrix of the classifier on a test set:

Options  (3)

InitialEvaluationHistory  (1)

Define a function that checks whether the ASCII character corresponding to an integer is a letter, then define a set of configurations:

Construct an initial training set:

Train a classification object to classify whether an integer corresponds to a letter by including the preceding information:

The examples in the first row in the training history now correspond to the initial training set:

MaxIterations  (1)

Train a classification object to classify whether a number in a given interval is positive:

Obtain the number of function evaluations:

Specify the maximum number of iterations:

Check the number of function evaluations now:

Method  (1)

Define a region composed of a number of subregions, and a function that tells whether the blood pressure corresponding to a point in the region is "Low", "Ideal" or "High":

Train a classification object by specifying the method:

The configurations are explored randomly, with the data generating distribution:

Specify a different method for active classification:

The algorithm now prefers to explore configurations near the boundaries where the model is more uncertain:

Specify the method as an association, choosing the evaluation strategy and the classification method:

Applications  (3)

Grade Classifier  (1)

Define a "grade function" that gives a letter grade corresponding to a real score between 0 and 10:

Train a classification object to classify letter grades, with the domain specified by a configuration generator:

Obtain the classifier:

Display the confusion matrix of the classifier on a test set:

Region Member Classifier  (1)

Construct a geometric region corresponding to the map of the USA:

Define a function that tells whether a point lies inside this region:

Train a classification object for this function:

Obtain the corresponding classifier:

Plot the configurations explored during training. The density is higher close to the region boundary:

Visualize the classification region:

Program Choice Classifier  (1)

Define two programs to compute the ManhattanDistance between two elements:

Define a function that selects the program that more quickly computes the ManhattanDistance between two elements constructed from the three integers:

Set the domain of the function via a configuration generator:

Train a classification object to classify which program is faster:

Obtain the classifier:

Define a test set:

Display the accuracy and confusion matrix of the classifier on the test set:

Possible Issues  (1)

Specifying the domain of the function via a neighborhood configuration generator requires care.

Define a function that checks whether a point belongs to the unit rectangle, then define a neighborhood configuration generator:

Active classification may not work properly if the initial configuration and neighborhood configuration generator are not chosen properly:

See Also

Classify  ActiveClassificationObject  BayesianMinimization  BayesianMaximization

Related Guides

    ▪
  • Supervised Machine Learning

History

Introduced in 2017 (11.1) | Updated in 2017 (11.2)

Wolfram Research (2017), ActiveClassification, Wolfram Language function, https://reference.wolfram.com/language/ref/ActiveClassification.html (updated 2017).

Text

Wolfram Research (2017), ActiveClassification, Wolfram Language function, https://reference.wolfram.com/language/ref/ActiveClassification.html (updated 2017).

CMS

Wolfram Language. 2017. "ActiveClassification." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/ActiveClassification.html.

APA

Wolfram Language. (2017). ActiveClassification. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ActiveClassification.html

BibTeX

@misc{reference.wolfram_2025_activeclassification, author="Wolfram Research", title="{ActiveClassification}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/ActiveClassification.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_activeclassification, organization={Wolfram Research}, title={ActiveClassification}, year={2017}, url={https://reference.wolfram.com/language/ref/ActiveClassification.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English