Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
CenteredInterval
  • See Also
    • Interval
    • Around
    • N
    • IntervalMemberQ
    • IntervalUnion
    • IntervalIntersection
    • NumberLinePlot
  • Related Guides
    • Interval Arithmetic
    • Numbers with Uncertainty
    • See Also
      • Interval
      • Around
      • N
      • IntervalMemberQ
      • IntervalUnion
      • IntervalIntersection
      • NumberLinePlot
    • Related Guides
      • Interval Arithmetic
      • Numbers with Uncertainty

CenteredInterval[x,dx]

for real numbers x and dx gives a centered interval that contains the real interval {a in TemplateBox[{}, Reals]|x-dx<=a<=x+dx}.

CenteredInterval[x+ y,dx+ dy]

gives a centered interval that contains the complex rectangle {a+ⅈ b in TemplateBox[{}, Complexes]|x-dx<=a<=x+dx∧y-dy<=b<=y+dy}.

CenteredInterval[c]

for an approximate number c gives a centered interval that contains all values within the error bounds of c.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Constructing Center-Radius Intervals  
Interval Arithmetic  
Interval Properties  
Linear Algebra  
Properties & Relations  
Possible Issues  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • Interval
    • Around
    • N
    • IntervalMemberQ
    • IntervalUnion
    • IntervalIntersection
    • NumberLinePlot
  • Related Guides
    • Interval Arithmetic
    • Numbers with Uncertainty
    • See Also
      • Interval
      • Around
      • N
      • IntervalMemberQ
      • IntervalUnion
      • IntervalIntersection
      • NumberLinePlot
    • Related Guides
      • Interval Arithmetic
      • Numbers with Uncertainty

CenteredInterval

CenteredInterval[x,dx]

for real numbers x and dx gives a centered interval that contains the real interval {a in TemplateBox[{}, Reals]|x-dx<=a<=x+dx}.

CenteredInterval[x+ y,dx+ dy]

gives a centered interval that contains the complex rectangle {a+ⅈ b in TemplateBox[{}, Complexes]|x-dx<=a<=x+dx∧y-dy<=b<=y+dy}.

CenteredInterval[c]

for an approximate number c gives a centered interval that contains all values within the error bounds of c.

Details

  • Centered intervals are also known as center-radius or mid-radius intervals.
  • CenteredInterval is typically used to obtain verified bounds on errors accumulated through numeric computation. Given error bounds for all arguments of a function, centered interval computation provides a reliable bound for the error in the function value.
  • CenteredInterval[…] gives a centered interval object Δ with the center and the radius , where and are Gaussian rational numbers with power of two denominators. If and are real, then Δ represents the real interval ; otherwise, Δ represents the complex rectangle .
  • Arithmetic operations and many mathematical functions work with centered interval arguments. f[Δ1,…,Δn] yields a centered interval object Δ that contains f[a1,…,an] for any ai∈Δi.
  • IntervalMemberQ can be used to decide interval membership or inclusion between intervals.
  • Relational operators such as Equal and Less yield explicit True or False results whenever they are given disjoint intervals.
  • In StandardForm and related formats, CenteredInterval objects are printed in elided form, with only approximate values of the center and the radius displayed.
  • Normal converts CenteredInterval objects to arbitrary-precision numbers with accuracy corresponding to the radius.
  • Information[CenteredInterval[…], prop] gives the property prop of the center-radius interval. The following properties can be specified:
  • "Center"the center of the interval
    "Radius"the radius of the interval
    "Bounds"bounds on the values in the interval
  • Linear algebra operations such as Det, Inverse, LinearSolve and Eigensystem can be used for matrices with CenteredInterval entries.

Examples

open all close all

Basic Examples  (3)

Construct a real interval:

Evaluate a function at the interval:

Convert the result to an arbitrary-precision number:

Construct a complex interval:

Evaluate a function at the interval:

Extract the exact values of the center and the radius:

Compute bounds on values of on the rectangle :

Approximate the set of values of on the rectangle :

The computed region lies within the bounds:

Scope  (27)

Constructing Center-Radius Intervals  (7)

Construct a real interval by specifying a center and a radius:

Construct a complex interval by specifying a center and a radius:

Construct centered intervals by specifying arbitrary-precision numbers:

Convert a bounded Interval object to a centered interval:

Binary Gaussian rationals are exactly representable as intervals with radius zero:

Other exact numbers are converted to intervals with nonzero radii:

Nonzero machine-precision numbers are treated as numbers with $MachinePrecision precise digits:

Convert machine-precision zero to a center-radius interval:

Interval Arithmetic  (5)

Use arithmetic operations with centered interval arguments:

Use centered intervals as arguments of mathematical functions:

Operations with centered interval and numeric arguments yield centered intervals:

The returned interval contains all values of the function in the input interval:

Interval arithmetic operations return Indeterminate if the set of values is unbounded:

Interval Properties  (5)

Extract the properties of a real interval:

The center and the radius are binary rational numbers:

Find rational bounds for the elements of the interval:

Convert the interval to an arbitrary-precision number:

Extract the center and the radius of a complex interval:

The center and the radius are binary Gaussian rational numbers:

Find Gaussian rational bounds for the elements of the interval:

Convert the interval to an arbitrary-precision number:

Test interval membership:

Test inclusion of intervals:

Visualize the intervals:

Compare real intervals:

If the intervals intersect, the comparison cannot be resolved:

Use IntervalIntersection to compute the intersection:

The empty interval is expressed as Interval[]:

Linear Algebra  (10)

Product of CenteredInterval matrices:

Find random representatives mrep and nrep of m and n:

Verify that mn contains the product of mrep and nrep:

Raise a CenteredInterval matrix to an integer power:

Find a random representative mrep of m:

Verify that mpow contains MatrixPower[mrep,17]:

The exponential of a CenteredInterval matrix:

Find a random representative mrep of m:

Verify that mexp contains the exponential of mrep:

Determinant of a CenteredInterval matrix:

Find a random representative mrep of m:

Verify that mdet contains the determinant of mrep:

Inverse of a CenteredInterval matrix:

Find a random representative mrep of m:

Verify that minv contains the inverse of mrep:

Solve for CenteredInterval matrices:

Find random representatives mrep and brep of m and b:

Verify that sol contains LinearSolve[mrep,brep]:

Eigensystem of a CenteredInterval matrix:

Find an eigensystem for a random representative mrep of m:

Verify that, after reordering and scaling of vectors, vals contain rvals and vecs contain rvecs:

LU decomposition for a CenteredInterval matrix:

Cholesky decomposition for a real symmetric positive definite CenteredInterval matrix:

Characteristic polynomial of a CenteredInterval matrix:

Find a random representative mrep of m:

Verify that the coefficients of p contain the coefficients of the characteristic polynomial of mrep:

Properties & Relations  (2)

Interval arithmetic provides verified bounds on the computation error:

Since , the error for is bounded by :

Arbitrary-precision number arithmetic estimates the error based on the linear term, getting :

Interval represents real intervals given by specifying their endpoints:

Convert the interval to CenteredInterval representation:

Convert it back:

When interval endpoints are not binary rationals, conversion makes the interval larger:

Possible Issues  (1)

Only bounded intervals can be represented as CenteredInterval:

Interval representation allows unbounded intervals:

See Also

Interval  Around  N  IntervalMemberQ  IntervalUnion  IntervalIntersection  NumberLinePlot

Related Guides

    ▪
  • Interval Arithmetic
  • ▪
  • Numbers with Uncertainty

History

Introduced in 2021 (13.0)

Wolfram Research (2021), CenteredInterval, Wolfram Language function, https://reference.wolfram.com/language/ref/CenteredInterval.html.

Text

Wolfram Research (2021), CenteredInterval, Wolfram Language function, https://reference.wolfram.com/language/ref/CenteredInterval.html.

CMS

Wolfram Language. 2021. "CenteredInterval." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CenteredInterval.html.

APA

Wolfram Language. (2021). CenteredInterval. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CenteredInterval.html

BibTeX

@misc{reference.wolfram_2025_centeredinterval, author="Wolfram Research", title="{CenteredInterval}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/CenteredInterval.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_centeredinterval, organization={Wolfram Research}, title={CenteredInterval}, year={2021}, url={https://reference.wolfram.com/language/ref/CenteredInterval.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English