Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
ContrastiveLossLayer
  • See Also
    • NetPairEmbeddingOperator
    • MeanAbsoluteLossLayer
    • CrossEntropyLossLayer
    • NetGraph
    • NetTrain
  • Related Guides
    • Neural Network Layers
  • Tech Notes
    • Neural Networks in the Wolfram Language
    • See Also
      • NetPairEmbeddingOperator
      • MeanAbsoluteLossLayer
      • CrossEntropyLossLayer
      • NetGraph
      • NetTrain
    • Related Guides
      • Neural Network Layers
    • Tech Notes
      • Neural Networks in the Wolfram Language

ContrastiveLossLayer[]

represents a loss layer that computes a loss based on a distance metric and a target that specifies whether the distance should be minimized or maximized.

ContrastiveLossLayer[margin]

specifies a distance above which the loss is zero for True targets.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Applications  
See Also
Tech Notes
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • NetPairEmbeddingOperator
    • MeanAbsoluteLossLayer
    • CrossEntropyLossLayer
    • NetGraph
    • NetTrain
  • Related Guides
    • Neural Network Layers
  • Tech Notes
    • Neural Networks in the Wolfram Language
    • See Also
      • NetPairEmbeddingOperator
      • MeanAbsoluteLossLayer
      • CrossEntropyLossLayer
      • NetGraph
      • NetTrain
    • Related Guides
      • Neural Network Layers
    • Tech Notes
      • Neural Networks in the Wolfram Language

ContrastiveLossLayer

ContrastiveLossLayer[]

represents a loss layer that computes a loss based on a distance metric and a target that specifies whether the distance should be minimized or maximized.

ContrastiveLossLayer[margin]

specifies a distance above which the loss is zero for True targets.

Details and Options

  • ContrastiveLossLayer is typically used in conjunction with NetPairEmbeddingOperator in order to learn an embedding from an input into a vector space, such that similar inputs cluster together in the vector space and dissimilar inputs are separated.
  • ContrastiveLossLayer exposes the following ports for use in NetGraph etc.:
  • "Input"a real number representing a distance
    "Target"True if the distance should be maximized, False if it should be minimized
    "Loss"a real number
  • ContrastiveLossLayer[margin] computes the following loss:
  • ContrastiveLossLayer[…][<|"Input"in,"Target"target|>] explicitly computes the loss from applying the layer.
  • ContrastiveLossLayer[…][<|"Input"{in1,in2,…},"Target"{target1,target2,…}|>] explicitly computes losses for each of the ini and targeti.
  • When given a NumericArray as input, the output will be a NumericArray.
  • ContrastiveLossLayer is typically used inside NetGraph to construct a training network for a learned embedding.
  • A ContrastiveLossLayer[…] can be provided as the third argument to NetTrain when training a specific network.
  • When appropriate, ContrastiveLossLayer is automatically used by NetTrain if an explicit loss specification is not provided.
  • Options[ContrastiveLossLayer] gives the list of default options to construct the layer. Options[ContrastiveLossLayer[…]] gives the list of default options to evaluate the layer on some data.
  • Information[ContrastiveLossLayer[…]] gives a report about the layer.
  • Information[ContrastiveLossLayer[…],prop] gives the value of the property prop of ContrastiveLossLayer[…]. Possible properties are the same as for NetGraph.

Examples

open all close all

Basic Examples  (2)

Create a ContrastiveLossLayer with a given margin:

Create a ContrastiveLossLayer:

Apply it to some data:

If the target is True, the loss is nonzero only when the input distance is less than the default margin of 0.5:

If the target is False, the loss is proportional to the input distance:

Applications  (1)

Train a multilayer perceptron to embed a synthetic dataset based only on its topology. First, create the training data on a spiral-like manifold that is dense in the plane:

Create the perceptron:

Create a loss network to measure the performance of the embedding:

Create a generator that will sample pairs of points and associate them with True if their parameterization on the manifold differs by more than Pi:

Train the network, using a generator to sample pairs of points, and classify them as the same if their original parameterization was close:

Extract the embedding from the net:

Plot the 1D embedding learned by the net as a color map:

See Also

NetPairEmbeddingOperator  MeanAbsoluteLossLayer  CrossEntropyLossLayer  NetGraph  NetTrain

Tech Notes

    ▪
  • Neural Networks in the Wolfram Language

Related Guides

    ▪
  • Neural Network Layers

History

Introduced in 2017 (11.1)

Wolfram Research (2017), ContrastiveLossLayer, Wolfram Language function, https://reference.wolfram.com/language/ref/ContrastiveLossLayer.html.

Text

Wolfram Research (2017), ContrastiveLossLayer, Wolfram Language function, https://reference.wolfram.com/language/ref/ContrastiveLossLayer.html.

CMS

Wolfram Language. 2017. "ContrastiveLossLayer." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ContrastiveLossLayer.html.

APA

Wolfram Language. (2017). ContrastiveLossLayer. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ContrastiveLossLayer.html

BibTeX

@misc{reference.wolfram_2025_contrastivelosslayer, author="Wolfram Research", title="{ContrastiveLossLayer}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/ContrastiveLossLayer.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_contrastivelosslayer, organization={Wolfram Research}, title={ContrastiveLossLayer}, year={2017}, url={https://reference.wolfram.com/language/ref/ContrastiveLossLayer.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English