Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
LogNormalDistribution
  • See Also
    • NormalDistribution
    • JohnsonDistribution
    • Erf
    • InverseErf
  • Related Guides
    • Normal and Related Distributions
    • Distributions in Reliability Analysis
    • Functions Used in Statistics
    • Heavy Tail Distributions
    • Parametric Statistical Distributions
    • Survival Analysis
    • Actuarial Computation
    • Distributions in Communication Systems
  • Tech Notes
    • Continuous Distributions
    • See Also
      • NormalDistribution
      • JohnsonDistribution
      • Erf
      • InverseErf
    • Related Guides
      • Normal and Related Distributions
      • Distributions in Reliability Analysis
      • Functions Used in Statistics
      • Heavy Tail Distributions
      • Parametric Statistical Distributions
      • Survival Analysis
      • Actuarial Computation
      • Distributions in Communication Systems
    • Tech Notes
      • Continuous Distributions

LogNormalDistribution[μ,σ]

represents a lognormal distribution derived from a normal distribution with mean μ and standard deviation σ.

Details
Details and Options Details and Options
Background & Context
Examples  
Basic Examples  
Scope  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Tech Notes
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • NormalDistribution
    • JohnsonDistribution
    • Erf
    • InverseErf
  • Related Guides
    • Normal and Related Distributions
    • Distributions in Reliability Analysis
    • Functions Used in Statistics
    • Heavy Tail Distributions
    • Parametric Statistical Distributions
    • Survival Analysis
    • Actuarial Computation
    • Distributions in Communication Systems
  • Tech Notes
    • Continuous Distributions
    • See Also
      • NormalDistribution
      • JohnsonDistribution
      • Erf
      • InverseErf
    • Related Guides
      • Normal and Related Distributions
      • Distributions in Reliability Analysis
      • Functions Used in Statistics
      • Heavy Tail Distributions
      • Parametric Statistical Distributions
      • Survival Analysis
      • Actuarial Computation
      • Distributions in Communication Systems
    • Tech Notes
      • Continuous Distributions

LogNormalDistribution

LogNormalDistribution[μ,σ]

represents a lognormal distribution derived from a normal distribution with mean μ and standard deviation σ.

Details

  • LogNormalDistribution is also known as the Galton distribution.
  • LogNormalDistribution[0,1] is also known as Gibrat distribution.
  • The lognormal distribution LogNormalDistribution[μ,σ] is equivalent to TransformedDistribution[Exp[x],xNormalDistribution[μ,σ]].
  • LogNormalDistribution allows μ to be any real number and σ to be any positive real number.
  • LogNormalDistribution allows μ and σ to be dimensionless quantities.
  • LogNormalDistribution can be used with such functions as Mean, CDF, and RandomVariate. »

Background & Context

  • LogNormalDistribution[μ,σ] represents a continuous statistical distribution supported over the interval and parametrized by a real number μ and by a positive real number σ that together determine the overall shape of its probability density function (PDF). Depending on the values of σ and μ, the PDF of a lognormal distribution may be either unimodal with a single "peak" (i.e. a global maximum) or monotone decreasing with a potential singularity approaching the lower boundary of its domain. In addition, the PDF of the lognormal distribution has tails that are "fat", in the sense that its PDF decreases algebraically rather than decreasing exponentially for large values of . (This behavior can be made quantitatively precise by analyzing the SurvivalFunction of the distribution.) The lognormal distribution is sometimes called the Galton distribution, the antilognormal distribution, or the Cobb–Douglas distribution.
  • LogNormalDistribution is the distribution followed by the logarithm of a normally distributed random variable. In other words, if is a random variable and XLogNormalDistribution[mu,sigma] (where denotes "is distributed as"), then TemplateBox[{Log, paclet:ref/Log}, RefLink, BaseStyle -> {InlineFormula}][X]TemplateBox[{NormalDistribution, paclet:ref/NormalDistribution}, RefLink, BaseStyle -> {InlineFormula}][mu,sigma]. The origins of the lognormal distribution can be traced to an observation made by Francis Galton in the 1870s demonstrating that the distribution modeling the logarithm of a product of a number of independent positive random variates tends to a standard NormalDistribution as the number of variates gets infinitely large. The theory of the distribution was studied further in the early 1900s and has since been found to accurately model both the weights of humans and the sizes of computer files on a file system. In addition, the lognormal distribution has become a widely utilized tool for modeling various phenomena, including dust concentrations, gold and uranium grades, flood flows, lifetime distributions for manufactured products, and miscellaneous phenomena in finance and economics.
  • RandomVariate can be used to give one or more machine- or arbitrary-precision (the latter via the WorkingPrecision option) pseudorandom variates from a lognormal distribution. Distributed[x,LogNormalDistribution[μ,σ]], written more concisely as xLogNormalDistribution[μ,σ], can be used to assert that a random variable x is distributed according to a lognormal distribution. Such an assertion can then be used in functions such as Probability, NProbability, Expectation, and NExpectation.
  • The probability density and cumulative distribution functions for lognormal distributions may be given using PDF[LogNormalDistribution[μ,σ],x] and CDF[LogNormalDistribution[μ,σ],x]. The mean, median, variance, raw moments, and central moments may be computed using Mean, Median, Variance, Moment, and CentralMoment, respectively.
  • DistributionFitTest can be used to test if a given dataset is consistent with a lognormal distribution, EstimatedDistribution to estimate a lognormal parametric distribution from given data, and FindDistributionParameters to fit data to a lognormal distribution. ProbabilityPlot can be used to generate a plot of the CDF of given data against the CDF of a symbolic lognormal distribution, and QuantilePlot to generate a plot of the quantiles of given data against the quantiles of a symbolic lognormal distribution.
  • TransformedDistribution can be used to represent a transformed lognormal distribution, CensoredDistribution to represent the distribution of values censored between upper and lower values, and TruncatedDistribution to represent the distribution of values truncated between upper and lower values. CopulaDistribution can be used to build higher-dimensional distributions that contain a lognormal distribution, and ProductDistribution can be used to compute a joint distribution with independent component distributions involving lognormal distributions.
  • LogNormalDistribution is related to a number of other distributions. It can be realized as a transformation of NormalDistribution, in the sense that the PDF of TransformedDistribution[Exp[x],xNormalDistribution[μ,σ]] is precisely the same as that of LogNormalDistribution[μ,σ]. Its logarithmic behavior is qualitatively similar to that of LogLogisticDistribution, LogMultinormalDistribution, and LogGammaDistribution. LogNormalDistribution is a special case of JohnsonDistribution. One can derive SuzukiDistribution by combining LogNormalDistribution with RayleighDistribution, in the sense that the PDF of SuzukiDistribution[μ,ν] is precisely the same as that of TransformedDistribution[u v,{uRayleighDistribution[1],vLogNormalDistribution[μ,ν]}]. By way of its connection to NormalDistribution, LogNormalDistribution is also related to StableDistribution, RiceDistribution, MaxwellDistribution, LevyDistribution, LaplaceDistribution, ChiDistribution, and ChiSquareDistribution.

Examples

open all close all

Basic Examples  (4)

Probability density function:

Cumulative distribution function:

Mean and variance:

Median:

Scope  (7)

Generate a sample of pseudorandom numbers from a log-normal distribution:

Compare the histogram to the PDF:

Distribution parameters estimation:

Estimate the distribution parameters from sample data:

Compare the density histogram of the sample with the PDF of the estimated distribution:

Skewness grows exponentially with standard deviation σ:

Limiting values:

Kurtosis grows exponentially with standard deviation σ:

Limiting values:

Different moments with closed forms as functions of parameters:

Moment:

Closed form for symbolic order:

CentralMoment:

FactorialMoment:

Cumulant:

Hazard function:

Quantile function:

Applications  (4)

Lognormal distribution can be used to model stock prices:

Fit the distribution to the data:

Compare the histogram to the PDF:

Find the probability that the price is above $500:

Find the mean price:

Simulate the price for the consecutive 30 days:

Lognormal distribution can be used to approximate wind speeds:

Find the estimated distribution:

Compare the PDF to the histogram of the wind data:

Find the probability of a day with wind speed greater than 30 km/h:

Find the mean wind speed:

Simulate wind speeds for a month:

The fractional change of stock price at time (in years) is assumed to be lognormally distributed with parameters and :

Compute expected stock price at epoch :

Assuming an investor can invest money for a year at a continuously compounded yearly rate risk-free, the risk-neutral pricing condition requires:

Solve for parameter :

Consider an option to buy this stock a year from now, at a fixed price . The value of such an option is:

The risk-neutral price of the option is determined as the present value of the expected option value:

Assuming rate of 5%, volatility parameter of 0.087, an initial price of $200 per share of stock, and a strike price of $190 per share, the Black–Scholes option price is:

GammaDistribution data can be approximated by a lognormal distribution:

Comparing log-likelihoods with estimation by gamma distribution:

Properties & Relations  (9)

Lognormal distribution is closed under scaling by a positive factor:

Power of a LogNormalDistribution follows a lognormal distribution:

In particular, a reciprocal of a lognormal distribution follows a lognormal distribution:

The product of two independent lognormally distributed variates follows lognormal distribution:

Quotient of two independent lognormally distributed variates follows lognormal distribution:

Geometric mean of independent identically lognormally distributed variates follows lognormal distribution:

Relationships to other distributions:

NormalDistribution is exponentially related to LogNormalDistribution:

Reverse transformation:

Lognormal distribution is a special case of SL JohnsonDistribution:

SuzukiDistribution can be obtained from lognormal distribution and RayleighDistribution:

Possible Issues  (2)

LogNormalDistribution is not defined when μ is not a real number:

LogNormalDistribution is not defined when σ is not a positive real number:

Substitution of invalid parameters into symbolic outputs gives results that are not meaningful:

Neat Examples  (2)

LogNormalDistribution is not uniquely determined by its sequence of moments:

Compute the sequence of moments:

Compare it to the sequence of moments of the LogNormalDistribution:

Plot distribution densities:

PDFs for different σ values with CDF contours:

See Also

NormalDistribution  JohnsonDistribution  Erf  InverseErf

Function Repository: MeanMedianLogNormalDistribution

Tech Notes

    ▪
  • Continuous Distributions

Related Guides

    ▪
  • Normal and Related Distributions
  • ▪
  • Distributions in Reliability Analysis
  • ▪
  • Functions Used in Statistics
  • ▪
  • Heavy Tail Distributions
  • ▪
  • Parametric Statistical Distributions
  • ▪
  • Survival Analysis
  • ▪
  • Actuarial Computation
  • ▪
  • Distributions in Communication Systems

History

Introduced in 2007 (6.0) | Updated in 2016 (10.4)

Wolfram Research (2007), LogNormalDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/LogNormalDistribution.html (updated 2016).

Text

Wolfram Research (2007), LogNormalDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/LogNormalDistribution.html (updated 2016).

CMS

Wolfram Language. 2007. "LogNormalDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/LogNormalDistribution.html.

APA

Wolfram Language. (2007). LogNormalDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LogNormalDistribution.html

BibTeX

@misc{reference.wolfram_2025_lognormaldistribution, author="Wolfram Research", title="{LogNormalDistribution}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/LogNormalDistribution.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_lognormaldistribution, organization={Wolfram Research}, title={LogNormalDistribution}, year={2016}, url={https://reference.wolfram.com/language/ref/LogNormalDistribution.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English