Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
MinStableDistribution
  • See Also
    • MaxStableDistribution
    • GumbelDistribution
    • WeibullDistribution
    • FrechetDistribution
    • ExtremeValueDistribution
  • Related Guides
    • Extreme Value Distributions
    • Distributions in Reliability Analysis
    • See Also
      • MaxStableDistribution
      • GumbelDistribution
      • WeibullDistribution
      • FrechetDistribution
      • ExtremeValueDistribution
    • Related Guides
      • Extreme Value Distributions
      • Distributions in Reliability Analysis

MinStableDistribution[μ,σ,ξ]

represents a generalized minimum extreme value distribution with location parameter μ, scale parameter σ, and shape parameter ξ.

Details
Details and Options Details and Options
Background & Context
Examples  
Basic Examples  
Scope  
Applications  
Properties & Relations  
Neat Examples  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • MaxStableDistribution
    • GumbelDistribution
    • WeibullDistribution
    • FrechetDistribution
    • ExtremeValueDistribution
  • Related Guides
    • Extreme Value Distributions
    • Distributions in Reliability Analysis
    • See Also
      • MaxStableDistribution
      • GumbelDistribution
      • WeibullDistribution
      • FrechetDistribution
      • ExtremeValueDistribution
    • Related Guides
      • Extreme Value Distributions
      • Distributions in Reliability Analysis

MinStableDistribution

MinStableDistribution[μ,σ,ξ]

represents a generalized minimum extreme value distribution with location parameter μ, scale parameter σ, and shape parameter ξ.

Details

  • MinStableDistribution is also known as Fisher–Tippett distribution.
  • The generalized minimum extreme value distribution gives the asymptotic distribution of the minimum value in a sample from a distribution such as the normal, Cauchy, or beta distribution.
  • The probability density for value in a generalized minimum extreme value distribution is proportional to for and zero otherwise.
  • MinStableDistribution allows μ and ξ to be any real numbers and σ to be any positive real number.
  • MinStableDistribution allows μ and σ to be any quantities of any unit dimensions, and ξ to be a dimensionless quantity. »
  • MinStableDistribution can be used with such functions as Mean, CDF, and RandomVariate.

Background & Context

  • MinStableDistribution[μ,σ,ξ] represents a continuous statistical distribution supported on the set of real numbers satisfying and parametrized by a positive real number σ (called a "scale parameter") and real numbers μ and ξ (a "location parameter" and a "shape parameter", respectively). Together, these parameters determine the overall behavior of its probability density function (PDF). In general, the PDF of a min-stable distribution is unimodal with a single "peak" (i.e. a global maximum), though its overall shape (height, spread, and horizontal location of its maximum) is determined by the values of μ, σ, and ξ. In addition, the tails of the PDF are "thin" in the sense that the PDF decreases exponentially rather than algebraically for large values of . (This behavior can be made quantitatively precise by analyzing the SurvivalFunction of the distribution.) Along with the max-stable distribution (MaxStableDistribution), the min-stable distribution is a so-called "extreme value distribution" and may be referred to as the generalized minimum extreme value distribution, a type-1 extreme value distribution (not to be confused with ExtremeValueDistribution), a Gumbel minimum distribution (not to be confused with GumbelDistribution), and a Fisher-Tippett distribution.
  • The generalized minimum extreme value distribution is the unique distribution modeling the asymptotic behavior of the minimum value in a sample from a distribution like the NormalDistribution, CauchyDistribution, or BetaDistribution, and was developed to combine the behaviors of other extreme value distributions such as GumbelDistribution, FrechetDistribution, and WeibullDistribution. Because its PDF is doubly exponential (i.e. is of the form Exp[-Exp[…]]), the graph of the distribution has more exaggerated features (like higher peaks and thinner tails), a property unique among distributions. A cornerstone in the field known as extreme value theory, the min-stable distribution is widely utilized to describe situations that are "extremely unlikely" (i.e. those in which datasets consist of variates with extreme deviations from the median) and has been used to model a number of phenomena in various subfields of finance and economics.
  • RandomVariate can be used to give one or more machine- or arbitrary-precision (the latter via the WorkingPrecision option) pseudorandom variates from a min-stable distribution. Distributed[x,MinStableDistribution[μ,σ,ξ]], written more concisely as xMinStableDistribution[μ,σ,ξ], can be used to assert that a random variable x is distributed according to a min-stable distribution. Such an assertion can then be used in functions such as Probability, NProbability, Expectation, and NExpectation.
  • The probability density and cumulative distribution functions may be given using PDF[MinStableDistribution[μ,σ,ξ],x] and CDF[MinStableDistribution[μ,σ,ξ],x]. The mean, median, variance, raw moments, and central moments may be computed using Mean, Median, Variance, Moment, and CentralMoment, respectively.
  • DistributionFitTest can be used to test if a given dataset is consistent with a min-stable distribution, EstimatedDistribution to estimate a min-stable parametric distribution from given data, and FindDistributionParameters to fit data to a min-stable distribution. ProbabilityPlot can be used to generate a plot of the CDF of given data against the CDF of a symbolic extreme value distribution and QuantilePlot to generate a plot of the quantiles of given data against the quantiles of a symbolic extreme value distribution.
  • TransformedDistribution can be used to represent a transformed extreme value distribution, CensoredDistribution to represent the distribution of values censored between upper and lower values, and TruncatedDistribution to represent the distribution of values truncated between upper and lower values. CopulaDistribution can be used to build higher-dimensional distributions that contain a min-stable distribution, and ProductDistribution can be used to compute a joint distribution with independent component distributions involving extreme value distributions.
  • The min-stable distribution is related to a number of other distributions. MinStableDistribution generalizes a number of distributions including GumbelDistribution (GumbelDistribution[α,β] is the same as MinStableDistribution[α,β,0]), WeibullDistribution (WeibullDistribution[α,β] is precisely MinStableDistribution[β,β/α,-1/α]), and ExpGammaDistribution (ExpGammaDistribution[1,σ,μ] has the same PDF as MinStableDistribution[μ,σ,0]). It can be transformed to obtain the distribution functions for MaxStableDistribution, FrechetDistribution, and ExtremeValueDistribution. MinStableDistribution is also related to ExponentialDistribution and LogisticDistribution.

Examples

open all close all

Basic Examples  (4)

Probability density function:

Cumulative distribution function:

Mean and variance:

Median:

Scope  (8)

Generate a sample of pseudorandom numbers from a generalized minimum extreme value distribution:

Compare its histogram to the PDF:

Distribution parameters estimation:

Estimate the distribution parameters from sample data:

Compare a density histogram of the sample with the PDF of the estimated distribution:

Skewness depends only on the shape parameter:

Limiting values:

The distribution is symmetric for:

Skewness has opposite sign to skewness of MaxStableDistribution:

Kurtosis depends only on the shape parameter:

Limiting values:

Kurtosis attains its minimum:

Kurtosis is the same as kurtosis of MaxStableDistribution:

Different moments with closed forms as functions of parameters:

Moment:

CentralMoment:

FactorialMoment:

Cumulant:

Hazard function:

Quantile function:

Consistent use of Quantity in parameters yields QuantityDistribution:

Find the size quartiles:

Applications  (4)

MinStableDistribution can be used to model the annual minimum mean daily flows. Consider the Mahanadi river and the minimum flows given in cubic meters per second:

Fit MinStableDistribution to the data:

Compare the histogram of the data to the PDF of the estimated distribution:

Find the average annual minimum mean daily flow:

Find the probability that the minimum flow is 1.5 cubic meters per second or less:

Assuming that the annual minimum flows are independent, find the probability that the minimum flow will not exceed 2 cubic meters per second for 3 consecutive years:

Simulate annual minimum mean daily flows for the next 30 years:

MinStableDistribution can be used to model yield strength:

Fit MinStableDistribution to the data:

Compare the histogram of the data with the PDF of the estimated distribution:

Find the average yield strength:

Find the probability that the yield strength is at least 38 kg/mm2:

Simulate the yield strength for 50 samples:

MinStableDistribution can be used to model size. Consider particles of fly ash with diameters given in 20 microns:

Fit the distribution to the data:

Compare the histogram of the data with the PDF of the estimated distribution:

Find the average particle diameter:

Find the probability that the diameter is at least 200 microns:

Simulate the diameters for 100 ash particles:

MinStableDistribution can be used to model the length of Cyrtoideae radiolarians:

Fit the distribution to the data:

Compare the histogram of the data with the PDF of the estimated distribution:

Find the average length of a cyrtoideae:

Find the probability that the length is at least 100 microns:

Simulate the lengths for 60 samples:

Properties & Relations  (10)

MinStableDistribution is closed under translation and scaling by a positive factor:

Scaling by a negative factor gives MaxStableDistribution:

MinStableDistribution is closed under taking Min:

Special case for shape parameter equal to 0:

CDF of MinStableDistribution solves the stability postulate equation:

Verify solution for :

Find the limit of :

Relationships to other distributions:

ExtremeValueDistribution is related to a generalized minimum extreme value distribution:

GumbelDistribution is a special case of a generalized minimum extreme value distribution:

Generalized minimum extreme value distribution is related to FrechetDistribution:

WeibullDistribution is a special case of a generalized minimum extreme value distribution:

Generalized minimum extreme value distribution is related to MaxStableDistribution:

ExpGammaDistribution is a special case of MinStableDistribution:

Neat Examples  (1)

PDFs for different ξ values with CDF contours:

See Also

MaxStableDistribution  GumbelDistribution  WeibullDistribution  FrechetDistribution  ExtremeValueDistribution

Related Guides

    ▪
  • Extreme Value Distributions
  • ▪
  • Distributions in Reliability Analysis

History

Introduced in 2010 (8.0) | Updated in 2016 (10.4)

Wolfram Research (2010), MinStableDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/MinStableDistribution.html (updated 2016).

Text

Wolfram Research (2010), MinStableDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/MinStableDistribution.html (updated 2016).

CMS

Wolfram Language. 2010. "MinStableDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/MinStableDistribution.html.

APA

Wolfram Language. (2010). MinStableDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MinStableDistribution.html

BibTeX

@misc{reference.wolfram_2025_minstabledistribution, author="Wolfram Research", title="{MinStableDistribution}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/MinStableDistribution.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_minstabledistribution, organization={Wolfram Research}, title={MinStableDistribution}, year={2016}, url={https://reference.wolfram.com/language/ref/MinStableDistribution.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English