Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
StandardDeviation
  • See Also
    • Variance
    • Mean
    • MeanDeviation
    • MedianDeviation
    • TrimmedVariance
    • WinsorizedVariance
    • BiweightMidvariance
    • QnDispersion
    • SnDispersion
    • Kurtosis
    • CentralMoment
    • Covariance
    • MeanAround
    • Standardize
    • StandardDeviationFilter
    • Expectation
    • Quantile
  • Related Guides
    • Descriptive Statistics
    • Time Series Processing
    • Statistical Data Analysis
    • Statistical Moments and Generating Functions
    • GPU Computing
    • Using the Wolfram Data Drop
    • Numbers with Uncertainty
    • Date & Time
    • Tabular Modeling
    • GPU Computing with Apple
    • GPU Computing with NVIDIA
    • Probability & Statistics with Quantities
    • Tabular Transformation
    • Symbolic Vectors, Matrices and Arrays
  • Tech Notes
    • Basic Statistics
    • Discrete Distributions
    • Continuous Distributions
    • See Also
      • Variance
      • Mean
      • MeanDeviation
      • MedianDeviation
      • TrimmedVariance
      • WinsorizedVariance
      • BiweightMidvariance
      • QnDispersion
      • SnDispersion
      • Kurtosis
      • CentralMoment
      • Covariance
      • MeanAround
      • Standardize
      • StandardDeviationFilter
      • Expectation
      • Quantile
    • Related Guides
      • Descriptive Statistics
      • Time Series Processing
      • Statistical Data Analysis
      • Statistical Moments and Generating Functions
      • GPU Computing
      • Using the Wolfram Data Drop
      • Numbers with Uncertainty
      • Date & Time
      • Tabular Modeling
      • GPU Computing with Apple
      • GPU Computing with NVIDIA
      • Probability & Statistics with Quantities
      • Tabular Transformation
      • Symbolic Vectors, Matrices and Arrays
    • Tech Notes
      • Basic Statistics
      • Discrete Distributions
      • Continuous Distributions

StandardDeviation[data]

gives the standard deviation estimate of the elements in data.

StandardDeviation[dist]

gives the standard deviation of the distribution dist.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Basic Uses  
Array Data  
Image and Audio Data  
Date and Time  
Distributions and Processes  
Applications  
Properties & Relations  
Neat Examples  
See Also
Tech Notes
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • Variance
    • Mean
    • MeanDeviation
    • MedianDeviation
    • TrimmedVariance
    • WinsorizedVariance
    • BiweightMidvariance
    • QnDispersion
    • SnDispersion
    • Kurtosis
    • CentralMoment
    • Covariance
    • MeanAround
    • Standardize
    • StandardDeviationFilter
    • Expectation
    • Quantile
  • Related Guides
    • Descriptive Statistics
    • Time Series Processing
    • Statistical Data Analysis
    • Statistical Moments and Generating Functions
    • GPU Computing
    • Using the Wolfram Data Drop
    • Numbers with Uncertainty
    • Date & Time
    • Tabular Modeling
    • GPU Computing with Apple
    • GPU Computing with NVIDIA
    • Probability & Statistics with Quantities
    • Tabular Transformation
    • Symbolic Vectors, Matrices and Arrays
  • Tech Notes
    • Basic Statistics
    • Discrete Distributions
    • Continuous Distributions
    • See Also
      • Variance
      • Mean
      • MeanDeviation
      • MedianDeviation
      • TrimmedVariance
      • WinsorizedVariance
      • BiweightMidvariance
      • QnDispersion
      • SnDispersion
      • Kurtosis
      • CentralMoment
      • Covariance
      • MeanAround
      • Standardize
      • StandardDeviationFilter
      • Expectation
      • Quantile
    • Related Guides
      • Descriptive Statistics
      • Time Series Processing
      • Statistical Data Analysis
      • Statistical Moments and Generating Functions
      • GPU Computing
      • Using the Wolfram Data Drop
      • Numbers with Uncertainty
      • Date & Time
      • Tabular Modeling
      • GPU Computing with Apple
      • GPU Computing with NVIDIA
      • Probability & Statistics with Quantities
      • Tabular Transformation
      • Symbolic Vectors, Matrices and Arrays
    • Tech Notes
      • Basic Statistics
      • Discrete Distributions
      • Continuous Distributions

StandardDeviation

StandardDeviation[data]

gives the standard deviation estimate of the elements in data.

StandardDeviation[dist]

gives the standard deviation of the distribution dist.

Details

  • StandardDeviation is also known as volatility.
  • StandardDeviation measures dispersion from the mean of data or distributions.
  • For VectorQ data with =Mean[data], the standard deviation estimate is given by for reals and for complexes.
  • For MatrixQ data, the standard deviation estimate is computed for each column vector with StandardDeviation[{{x1,y1,…},{x2,y2,…},…}] equivalent to {StandardDeviation[{x1,x2,…}],StandardDeviation[{y1,y2,…}]}. »
  • For ArrayQ data, standard deviation is equivalent to ArrayReduce[StandardDeviation,data,1]. »
  • For a real weighted WeightedData[{x1,x2,…},{w1,w2,…}], the standard deviation is given by . »
  • StandardDeviation handles both numerical and symbolic data.
  • The data can have the following additional forms and interpretations:
  • Associationthe values (the keys are ignored) »
    SparseArrayas an array, equivalent to Normal[data] »
    QuantityArrayquantities as an array »
    WeightedDataweighted variance, based on the underlying EmpiricalDistribution »
    EventDatabased on the underlying SurvivalDistribution »
    TimeSeries, TemporalData, …vector or array of values (the time stamps ignored) »
    Image,Image3DRGB channel's values or grayscale intensity value »
    Audioamplitude values of all channels »
    DateObject, TimeObjectlist of dates or list of times »
  • For a univariate distribution dist, the standard deviation is given by σ=Expectation[(x-μ)2,xdist]1/2 with μ=Mean[dist]. »
  • For multivariate distribution dist, the standard deviation is given by {σx,σy,…}=Expectation[{(x-μx)2,(y-μy)2,…},{x,y,…}dist]1/2. »
  • For a random process proc, the standard deviation function can be computed for slice distribution at time t, SliceDistribution[proc,t], as σ[t]=StandardDeviation[SliceDistribution[proc,t]]. »

Examples

open all close all

Basic Examples  (4)

Standard deviation of a list of numbers:

Standard deviation of elements in each column:

Standard deviation of a list of dates:

Standard deviation of a parametric distribution:

Scope  (24)

Basic Uses  (8)

Exact input yields exact output:

Approximate input yields approximate output:

Find the standard deviation of WeightedData:

Find the standard deviation of EventData:

Find the standard deviation of TemporalData:

Find the standard deviation of a TimeSeries:

The standard deviation depends only on the values:

Find a three-element moving standard deviation:

Find the standard deviation of data involving quantities:

Array Data  (5)

StandardDeviation for a matrix gives columnwise standard deviations:

StandardDeviation for a tensor gives columnwise standard deviations at the first level:

Works with large arrays:

When the input is an Association, StandardDeviation works on its values:

SparseArray data can be used just like dense arrays:

Find the standard deviation of a QuantityArray:

Image and Audio Data  (2)

Channelwise standard deviation of an RGB image:

Standard deviation of a grayscale image:

On audio objects, StandardDeviation works channelwise:

Date and Time  (5)

Compute standard deviation of dates:

Compute the weighted standard deviation of dates:

Compute the standard deviation of dates given in different calendars:

Compute the standard deviation of times:

Compute the standard deviation of times with different time zone specifications:

Distributions and Processes  (4)

Find the standard deviation for univariate distributions:

Multivariate distributions:

Standard deviation for derived distributions:

Data distribution:

Standard deviation for distributions with quantities:

Standard deviation function for a random process:

Applications  (7)

StandardDeviation is a measure of dispersion:

Transform data to have mean 0 and unit variance:

Identify periods of high volatility in the S&P 500 using a five-year moving standard deviation:

Find the mean and standard deviation for the number of cycles to failure of deep-groove ball-bearings:

Plot the data:

Probability that the values lie within two standard deviations of the mean:

Investigate weak stationarity of the process data by analyzing standard deviations of slices:

Use a larger plot range to see how relatively small the variations are:

Compute standard deviation for slices of a collection of paths of a random process:

Choose a few slice times:

Compute standard deviations and means:

Create a standard deviation band around the mean:

Plot standard deviations around the mean over these paths:

Find the standard deviation of the heights for the children in a class:

The heights within one standard deviation from the mean:

Properties & Relations  (9)

The square of StandardDeviation is Variance:

StandardDeviation is a scaled Norm of deviations from the Mean:

StandardDeviation is the square root of a scaled CentralMoment:

StandardDeviation is a scaled RootMeanSquare of the deviations:

StandardDeviation is the square root of a scaled Mean of squared deviations:

StandardDeviation as a scaled EuclideanDistance from the Mean:

StandardDeviation squared is less than MeanDeviation if all absolute deviations are less than 1:

StandardDeviation squared is greater than MeanDeviation if all absolute deviations are greater than 1:

StandardDeviation of a random variable as the square root of Variance:

Neat Examples  (1)

The distribution of StandardDeviation estimates for 20, 100, and 300 samples:

See Also

Variance  Mean  MeanDeviation  MedianDeviation  TrimmedVariance  WinsorizedVariance  BiweightMidvariance  QnDispersion  SnDispersion  Kurtosis  CentralMoment  Covariance  MeanAround  Standardize  StandardDeviationFilter  Expectation  Quantile

Function Repository: PopulationStandardDeviation  PooledStandardDeviation  PopulationVariance  StatisticsSummary  StudentTValue

Tech Notes

    ▪
  • Basic Statistics
  • ▪
  • Discrete Distributions
  • ▪
  • Continuous Distributions

Related Guides

    ▪
  • Descriptive Statistics
  • ▪
  • Time Series Processing
  • ▪
  • Statistical Data Analysis
  • ▪
  • Statistical Moments and Generating Functions
  • ▪
  • GPU Computing
  • ▪
  • Using the Wolfram Data Drop
  • ▪
  • Numbers with Uncertainty
  • ▪
  • Date & Time
  • ▪
  • Tabular Modeling
  • ▪
  • GPU Computing with Apple
  • ▪
  • GPU Computing with NVIDIA
  • ▪
  • Probability & Statistics with Quantities
  • ▪
  • Tabular Transformation
  • ▪
  • Symbolic Vectors, Matrices and Arrays

History

Introduced in 2003 (5.0) | Updated in 2007 (6.0) ▪ 2023 (13.3) ▪ 2024 (14.1)

Wolfram Research (2003), StandardDeviation, Wolfram Language function, https://reference.wolfram.com/language/ref/StandardDeviation.html (updated 2024).

Text

Wolfram Research (2003), StandardDeviation, Wolfram Language function, https://reference.wolfram.com/language/ref/StandardDeviation.html (updated 2024).

CMS

Wolfram Language. 2003. "StandardDeviation." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2024. https://reference.wolfram.com/language/ref/StandardDeviation.html.

APA

Wolfram Language. (2003). StandardDeviation. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/StandardDeviation.html

BibTeX

@misc{reference.wolfram_2025_standarddeviation, author="Wolfram Research", title="{StandardDeviation}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/StandardDeviation.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_standarddeviation, organization={Wolfram Research}, title={StandardDeviation}, year={2024}, url={https://reference.wolfram.com/language/ref/StandardDeviation.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English