Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
StudentTDistribution
  • See Also
    • MultivariateTDistribution
    • NormalDistribution
    • ChiSquareDistribution
    • NoncentralStudentTDistribution
    • CauchyDistribution
    • HotellingTSquareDistribution
    • Beta
    • BetaRegularized
    • InverseBetaRegularized
  • Related Guides
    • Normal and Related Distributions
    • Parametric Statistical Distributions
    • Functions Used in Statistics
    • Heavy Tail Distributions
  • Tech Notes
    • Continuous Distributions
    • See Also
      • MultivariateTDistribution
      • NormalDistribution
      • ChiSquareDistribution
      • NoncentralStudentTDistribution
      • CauchyDistribution
      • HotellingTSquareDistribution
      • Beta
      • BetaRegularized
      • InverseBetaRegularized
    • Related Guides
      • Normal and Related Distributions
      • Parametric Statistical Distributions
      • Functions Used in Statistics
      • Heavy Tail Distributions
    • Tech Notes
      • Continuous Distributions

StudentTDistribution[ν]

represents a standard Student distribution with ν degrees of freedom.

StudentTDistribution[μ,σ,ν]

represents a Student distribution with location parameter μ, scale parameter σ, and ν degrees of freedom.

Details
Details and Options Details and Options
Background & Context
Examples  
Basic Examples  
Scope  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Tech Notes
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • MultivariateTDistribution
    • NormalDistribution
    • ChiSquareDistribution
    • NoncentralStudentTDistribution
    • CauchyDistribution
    • HotellingTSquareDistribution
    • Beta
    • BetaRegularized
    • InverseBetaRegularized
  • Related Guides
    • Normal and Related Distributions
    • Parametric Statistical Distributions
    • Functions Used in Statistics
    • Heavy Tail Distributions
  • Tech Notes
    • Continuous Distributions
    • See Also
      • MultivariateTDistribution
      • NormalDistribution
      • ChiSquareDistribution
      • NoncentralStudentTDistribution
      • CauchyDistribution
      • HotellingTSquareDistribution
      • Beta
      • BetaRegularized
      • InverseBetaRegularized
    • Related Guides
      • Normal and Related Distributions
      • Parametric Statistical Distributions
      • Functions Used in Statistics
      • Heavy Tail Distributions
    • Tech Notes
      • Continuous Distributions

StudentTDistribution

StudentTDistribution[ν]

represents a standard Student distribution with ν degrees of freedom.

StudentTDistribution[μ,σ,ν]

represents a Student distribution with location parameter μ, scale parameter σ, and ν degrees of freedom.

Details

  • The probability density for value in a Student distribution with degrees of freedom is proportional to . »
  • For following a Student distribution with location parameter μ, scale parameter σ and ν degrees of freedom, follows a standard Student distribution with ν degrees of freedom.
  • For integer ν, the Student distribution gives the distribution of the deviation from the true mean of the observed mean for a sample of ν values from a normal distribution, normalized by standard deviation of the sample.
  • StudentTDistribution allows μ to be any real number and σ and ν to be any positive real numbers.
  • StudentTDistribution allows μ and σ to be any quantities of the same unit dimension, and ν to be any dimensionless quantity. »
  • StudentTDistribution can be used with such functions as Mean, CDF, and RandomVariate. »

Background & Context

  • StudentTDistribution[μ,σ,ν] represents a continuous statistical distribution defined and supported over the set of real numbers and parametrized by a real number μ (called a "location parameter") and by positive real numbers σ and ν (called a "scale parameter" and the "degrees of freedom", respectively), which together determine the overall behavior of its probability density function (PDF). In general, the PDF of a Student distribution is unimodal with a single "peak" (i.e. a global maximum), though its overall shape (its height, its spread, and the horizontal location of its maximum) is determined by the values of μ, σ, and ν. In addition, the tails of the PDF are "fat", in the sense that the PDF decreases algebraically rather than decreasing exponentially for large values of . (This behavior can be made quantitatively precise by analyzing the SurvivalFunction of the distribution.) The one-parameter form StudentTDistribution[ν] is equivalent to StudentTDistribution[0,1,ν] and is sometimes referred to as "the" Student distribution, while the three-parameter form StudentTDistribution[μ,σ,ν] is sometimes referred to as the generalized Student distribution.
  • The Student distribution was first devised by English statistician William Gosset (published under the pseudonym "Student") in 1908. Gosset showed that for integer ν, the Student distribution is precisely the distribution of the deviation of the observed mean from the true population mean given a sample of ν normalized and normally-distributed random variates. The -distribution is widely used throughout statistics and is an often-utilized tool in hypothesis testing, analysis of variance tests, Bayesian analysis, and stochastic processes. The distribution has also found extensive use across a number of different fields to model phenomena including stock price fluctuations, phase derivatives of telecommunications components, noise models, and image analysis.
  • RandomVariate can be used to give one or more machine- or arbitrary-precision (the latter via the WorkingPrecision option) pseudorandom variates from a Student distribution. Distributed[x,StudentTDistribution[μ,σ,ν]], written more concisely as xStudentTDistribution[μ,σ,ν], can be used to assert that a random variable x is distributed according to a Student distribution. Such an assertion can then be used in functions such as Probability, NProbability, Expectation, and NExpectation.
  • The probability density and cumulative distribution functions for Student distributions may be given using PDF[StudentTDistribution[μ,σ,ν],x] and CDF[StudentTDistribution[μ,σ,ν],x]. The mean, median, variance, raw moments, and central moments may be computed using Mean, Median, Variance, Moment, and CentralMoment, respectively.
  • DistributionFitTest can be used to test if a given dataset is consistent with a Student distribution, EstimatedDistribution to estimate a Student parametric distribution from given data, and FindDistributionParameters to fit data to a Student distribution. ProbabilityPlot can be used to generate a plot of the CDF of given data against the CDF of a symbolic Student distribution, and QuantilePlot to generate a plot of the quantiles of given data against the quantiles of a symbolic Student distribution.
  • TransformedDistribution can be used to represent a transformed Student distribution, CensoredDistribution to represent the distribution of values censored between upper and lower values, and TruncatedDistribution to represent the distribution of values truncated between upper and lower values. CopulaDistribution can be used to build higher-dimensional distributions that contain a Student distribution, and ProductDistribution can be used to compute a joint distribution with independent component distributions involving Student distributions.
  • StudentTDistribution is related to a number of other distributions. StudentTDistribution is a special case of NoncentralStudentTDistribution, in the sense that the PDF of StudentTDistribution[ν] is precisely the same as that of NoncentralStudentTDistribution[ν,0] and is also generalized by PearsonDistribution in various ways. StudentTDistribution[ν] tends to NormalDistribution[] as ν→∞, while the PDF of StudentTDistribution can be obtained as transformations (TransformedDistribution) of FRatioDistribution, ChiSquareDistribution, and NormalDistribution and as a parameter mixture (ParameterMixtureDistribution) of NormalDistribution with GammaDistribution. StudentTDistribution is also closely related to CauchyDistribution, MultivariateTDistribution, and ChiDistribution.

Examples

open all close all

Basic Examples  (8)

Probability density function:

Cumulative distribution function:

Mean and variance:

Median:

Probability density function of a generalized Student distribution:

Cumulative distribution function of a generalized Student distribution:

Mean and variance of a generalized Student distribution:

Median of a generalized Student distribution:

Scope  (8)

Generate a sample of pseudorandom numbers from a Student distribution:

Compare its histogram to the PDF:

Distribution parameters estimation:

Estimate the distribution parameters from sample data:

Compare the density histogram of the sample with the PDF of the estimated distribution:

A Student distribution is symmetric and hence skewness is 0 if defined:

Kurtosis:

Adding scale and location parameters does not change the kurtosis:

In the limit, kurtosis is the same as for NormalDistribution:

Different moments with closed forms as functions of parameters:

Moment:

Closed form for symbolic order:

Moment for generalized Student distribution:

CentralMoment:

Closed form for symbolic order:

CentralMoment for generalized Student distribution:

Closed form for symbolic order:

FactorialMoment:

FactorialMoment for generalized Student distribution:

Cumulant:

Cumulant for generalized Student distribution:

Hazard function:

For generalized Student distribution:

Quantile function:

For generalized Student distribution:

Consistent use of Quantity in parameters yields QuantityDistribution:

Find quartiles:

Applications  (2)

Compute ‐values for a ‐test with degrees of freedom and alternative hypothesis :

Alternative hypothesis :

Alternative hypothesis TemplateBox[{X}, Abs]>TemplateBox[{t}, Abs]:

StudentTDistribution is used in exact (small) sampling theory. Define -statistics:

If data comes from a normal distribution, then the -statistics follow a StudentTDistribution, even for data that is a sample of small size (less than 30):

Properties & Relations  (16)

Student distribution is closed under translation and scaling by a positive factor:

StudentTDistribution[ν] converges to a normal distribution as :

Relationships to other distributions:

StudentTDistribution[ν] has location and scale :

The two forms are related by a change of variable:

StudentTDistribution[1] is equivalent to CauchyDistribution[0,1]:

The Student distribution converges to the standard NormalDistribution as ν tends to infinity:

StudentTDistribution is a NoncentralStudentTDistribution with noncentrality 0:

A square of a Student distributed variable has FRatioDistribution:

An inverse square of Student distributed variable has FRatioDistribution:

Student distribution is a special case of type 4 and type 7 PearsonDistribution:

Generalized Student distribution is a special case of type 4 and type 7 PearsonDistribution:

Student distribution can be obtained from ChiSquareDistribution:

Student distribution can be obtained from NormalDistribution and ChiSquareDistribution:

Student distribution is a parameter mixture of a NormalDistribution with GammaDistribution:

Marginals of MultivariateTDistribution with identity scale matrix are Student distributions:

Central moments of two Student distributions are proportional when defined:

Possible Issues  (2)

StudentTDistribution is not defined when ν is a not a positive real number:

Substitution of invalid parameters into symbolic outputs gives results that are not meaningful:

Neat Examples  (1)

PDFs for different ν values with CDF contours:

See Also

MultivariateTDistribution  NormalDistribution  ChiSquareDistribution  NoncentralStudentTDistribution  CauchyDistribution  HotellingTSquareDistribution  Beta  BetaRegularized  InverseBetaRegularized

Function Repository: StudentTCI  StudentTValue

Tech Notes

    ▪
  • Continuous Distributions

Related Guides

    ▪
  • Normal and Related Distributions
  • ▪
  • Parametric Statistical Distributions
  • ▪
  • Functions Used in Statistics
  • ▪
  • Heavy Tail Distributions

History

Introduced in 2007 (6.0) | Updated in 2008 (7.0) ▪ 2016 (10.4)

Wolfram Research (2007), StudentTDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/StudentTDistribution.html (updated 2016).

Text

Wolfram Research (2007), StudentTDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/StudentTDistribution.html (updated 2016).

CMS

Wolfram Language. 2007. "StudentTDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/StudentTDistribution.html.

APA

Wolfram Language. (2007). StudentTDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/StudentTDistribution.html

BibTeX

@misc{reference.wolfram_2025_studenttdistribution, author="Wolfram Research", title="{StudentTDistribution}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/StudentTDistribution.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_studenttdistribution, organization={Wolfram Research}, title={StudentTDistribution}, year={2016}, url={https://reference.wolfram.com/language/ref/StudentTDistribution.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English