Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
TriangleCenter
  • See Also
    • RegionCentroid
    • Triangle
    • TriangleConstruct
    • TriangleMeasurement
    • AngleBisector
    • Circumsphere
    • Insphere
    • Midpoint
    • GeometricScene
  • Related Guides
    • Synthetic Geometry
    • Plane Geometry
    • Region Properties and Measures
    • See Also
      • RegionCentroid
      • Triangle
      • TriangleConstruct
      • TriangleMeasurement
      • AngleBisector
      • Circumsphere
      • Insphere
      • Midpoint
      • GeometricScene
    • Related Guides
      • Synthetic Geometry
      • Plane Geometry
      • Region Properties and Measures

TriangleCenter[tri,type]

gives the specified type of center for the triangle tri.

TriangleCenter[tri]

gives the centroid of the triangle.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Properties & Relations  
Angle Bisector and Incenter  
Median, Midpoint and Centroid  
Perpendicular Bisector, Midpoint and Circumcenter  
Show More Show More
Altitude, Foot and Orthocenter  
Symmedian, Median and Angle Bisector  
Exterior Angle Bisector and Excenter  
Nine-Point Circle, Foot, Midpoint, Orthocenter  
Euler Line, Centroid, Circumcenter, Orthocenter and Nine-Point Center  
Midpoint  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • RegionCentroid
    • Triangle
    • TriangleConstruct
    • TriangleMeasurement
    • AngleBisector
    • Circumsphere
    • Insphere
    • Midpoint
    • GeometricScene
  • Related Guides
    • Synthetic Geometry
    • Plane Geometry
    • Region Properties and Measures
    • See Also
      • RegionCentroid
      • Triangle
      • TriangleConstruct
      • TriangleMeasurement
      • AngleBisector
      • Circumsphere
      • Insphere
      • Midpoint
      • GeometricScene
    • Related Guides
      • Synthetic Geometry
      • Plane Geometry
      • Region Properties and Measures

TriangleCenter

TriangleCenter[tri,type]

gives the specified type of center for the triangle tri.

TriangleCenter[tri]

gives the centroid of the triangle.

Details

  • TriangleCenter gives a list of coordinates.
  • The triangle tri can be given as {p1,p2,p3}, Triangle[{p1,p2,p3}] or Polygon[{p1,p2,p3}].
  • The following center types can be given:
  • {"AngleBisectingCevianEndpoint",p}endpoint of the cevian bisecting the angle at the vertex p
    "Centroid"centroid
    {"CevianEndpoint",center,p}endpoint of the cevian passing through the vertex p and the specified center
    "Circumcenter"center of the circumcircle
    {"Excenter",p}center of the excircle opposite from the vertex p
    {"Foot",p}foot of the altitude passing through the vertex p
    "Incenter"center of the incircle
    {"Midpoint",p}midpoint of the side opposite from the vertex p
    "NinePointCenter"center of nine-point circle
    "Orthocenter"orthocenter
    {"SymmedianEndpoint",p}endpoint of the symmedian passing through the vertex p
    "SymmedianPoint"symmedian point
  • In the form {"type",p}, p can be a symbolic point specification in a GeometricScene, or it can be an explicit vertex of the form {x,y}, Point[{x,y}] or the index i of the vertex. When given in the short form "type", the vertex p2 is used.
  • In the form {"CevianEndpoint",center,p}, the center can be given as a center type such as "Centroid" or as a point specification. When given in the short form {"CevianEndpoint",center}, the vertex p2 is used.
  • In any form that specifies a vertex p, a value of All will return a list of three values corresponding to the vertices.
  • TriangleCenter can be used with symbolic points in GeometricScene.

Examples

open all close all

Basic Examples  (2)

Find the incenter of a triangle:

Calculate the incenter of a triangle:

Calculate the excenter of a triangle at the specified vertex:

Specify a different vertex:

Calculate all of the excenters:

Scope  (12)

Calculate the endpoint of an angle bisector:

Calculate the centroid of a triangle:

Calculate the endpoint of a cevian passing through the orthocenter:

Calculate the endpoint of a cevian passing through a different vertex:

Calculate the endpoint of a cevian through an arbitrary center point:

Calculate the circumcenter of a triangle:

Calculate the excenter of a triangle at the specified vertex:

Calculate all of the excenters:

Calculate the foot of an altitude of a triangle at the specified vertex:

Calculate the incenter of a triangle:

Calculate the midpoint of a side of a triangle:

Calculate the nine-point center of a triangle:

Calculate the orthocenter of a triangle:

Calculate the endpoint of a symmedian:

Calculate the symmedian point of a triangle:

Properties & Relations  (20)

Angle Bisector and Incenter  (3)

An angle bisector endpoint is the intersection of an angle bisector and the opposite side:

The angle bisectors of a triangle intersect at the incenter:

TriangleConstruct[{a,b,c},"Incircle"] is equivalent to Circle[TriangleCenter[{a,b,c},"Incenter"],TriangleMeasurement[{a,b,c},"Inradius"]]:

Median, Midpoint and Centroid  (3)

A median intersects the opposite side at the midpoint:

The medians of a triangle intersect at the centroid:

TriangleCenter[{a,b,c}] is equivalent to RegionCentroid[Triangle[{a,b,c}]]:

Perpendicular Bisector, Midpoint and Circumcenter  (3)

The perpendicular bisector of a side passes through the midpoint of that side:

The perpendicular bisectors of a triangle intersect at the circumcenter:

TriangleConstruct[{a,b,c},"Circumcircle"] is equivalent to Circle[TriangleCenter[{a,b,c},"Circumcenter"],TriangleMeasurement[{a,b,c},"Circumradius"]]:

Altitude, Foot and Orthocenter  (2)

The foot of an altitude is the intersection of the altitude and the opposite side:

The altitudes of a triangle intersect at the orthocenter:

Symmedian, Median and Angle Bisector  (3)

The endpoint of a symmedian at a vertex is the intersection of the symmedian and the opposite side:

The angle bisector at a vertex also bisects the angle formed by the median and symmedian at that vertex:

The symmedians of a triangle intersect at the symmedian point:

Exterior Angle Bisector and Excenter  (2)

The excenter opposite a vertex is the intersection of the exterior angle bisectors of the opposite angles:

TriangleConstruct[{a,b,c},"Excircle"] is equivalent to Circle[TriangleCenter[{a,b,c},"Excenter"],TriangleMeasurement[{a,b,c},"Exradius"]]:

Nine-Point Circle, Foot, Midpoint, Orthocenter  (2)

The nine-point circle of a triangle passes through the feet of the altitudes, the midpoints of the sides and the midpoints of the segments from the vertices to the orthocenter:

TriangleConstruct[{a,b,c},"NinePointCircle"] is equivalent to Circle[TriangleCenter[{a,b,c},"NinePointCenter"],TriangleMeasurement[{a,b,c},"NinePointRadius"]]:

Euler Line, Centroid, Circumcenter, Orthocenter and Nine-Point Center  (1)

The Euler line passes through the centroid, circumcenter, orthocenter and nine-point center:

Midpoint  (1)

TriangleCenter[{a,b,c},"Midpoint"] is equivalent to Midpoint[{a,c}]:

See Also

RegionCentroid  Triangle  TriangleConstruct  TriangleMeasurement  AngleBisector  Circumsphere  Insphere  Midpoint  GeometricScene

Related Guides

    ▪
  • Synthetic Geometry
  • ▪
  • Plane Geometry
  • ▪
  • Region Properties and Measures

History

Introduced in 2019 (12.0)

Wolfram Research (2019), TriangleCenter, Wolfram Language function, https://reference.wolfram.com/language/ref/TriangleCenter.html.

Text

Wolfram Research (2019), TriangleCenter, Wolfram Language function, https://reference.wolfram.com/language/ref/TriangleCenter.html.

CMS

Wolfram Language. 2019. "TriangleCenter." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/TriangleCenter.html.

APA

Wolfram Language. (2019). TriangleCenter. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/TriangleCenter.html

BibTeX

@misc{reference.wolfram_2025_trianglecenter, author="Wolfram Research", title="{TriangleCenter}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/TriangleCenter.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_trianglecenter, organization={Wolfram Research}, title={TriangleCenter}, year={2019}, url={https://reference.wolfram.com/language/ref/TriangleCenter.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English