Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
UnitTriangle
  • See Also
    • UnitStep
    • UnitBox
    • HeavisideLambda
    • TriangleWave
    • DiracDelta
    • HeavisideTheta
    • HeavisidePi
  • Related Guides
    • Numerical Functions
    • See Also
      • UnitStep
      • UnitBox
      • HeavisideLambda
      • TriangleWave
      • DiracDelta
      • HeavisideTheta
      • HeavisidePi
    • Related Guides
      • Numerical Functions

UnitTriangle[x]

represents the unit triangle function on the interval .

UnitTriangle[x1,x2,…]

represents the multidimensional unit triangle function on the interval .

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Function Properties  
Differentiation and Integration  
Integral Transforms  
Applications  
Properties & Relations  
See Also
Related Guides
Related Links
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • UnitStep
    • UnitBox
    • HeavisideLambda
    • TriangleWave
    • DiracDelta
    • HeavisideTheta
    • HeavisidePi
  • Related Guides
    • Numerical Functions
    • See Also
      • UnitStep
      • UnitBox
      • HeavisideLambda
      • TriangleWave
      • DiracDelta
      • HeavisideTheta
      • HeavisidePi
    • Related Guides
      • Numerical Functions

UnitTriangle

UnitTriangle[x]

represents the unit triangle function on the interval .

UnitTriangle[x1,x2,…]

represents the multidimensional unit triangle function on the interval .

Details

  • UnitTriangle[x] is equivalent to Piecewise[{{x+1,-1≤x<0},{1-x,0≤x≤1}}].
  • UnitTriangle can be used in integrals and integral transforms.
  • UnitTriangle has attribute Orderless.
  • UnitTriangle automatically threads over lists. »

Examples

open all close all

Basic Examples  (4)

Evaluate numerically:

Plot in one dimension:

Plot in two dimensions:

UnitTriangle is a piecewise function:

Scope  (36)

Numerical Evaluation  (7)

Evaluate numerically:

Evaluate to high precision:

For inputs between -1 and 1, the precision of the output tracks the precision of the input:

For inputs outside that range, the result is exact:

Evaluate efficiently at high precision:

UnitTriangle threads over lists:

Compute the elementwise values of an array using automatic threading:

Or compute the matrix UnitTriangle function using MatrixFunction:

Compute average-case statistical intervals using Around:

Specific Values  (4)

Values of UnitTriangle at fixed points:

Value at zero:

Evaluate symbolically:

Find a value of x for which UnitTriangle[x]=0.4:

Visualization  (4)

Plot the UnitTriangle function:

Visualize scaled UnitTriangle functions:

Visualize the composition of UnitTriangle with a periodic function:

Plot UnitTriangle in three dimensions:

Function Properties  (11)

Function domain of UnitTriangle:

It is restricted to real inputs:

Function range of UnitTriangle:

UnitTriangle is an even function:

The area of the UnitTriangle is 1:

UnitTriangle is not an analytic function:

It has singularities:

However, it is continuous everywhere:

Verify the claim at one of its singular points:

UnitTriangle is neither nondecreasing nor nonincreasing:

UnitTriangle is not injective:

UnitTriangle is not surjective:

UnitTriangle is non-negative:

UnitTriangle is neither convex nor concave:

TraditionalForm typesetting:

Differentiation and Integration  (6)

First derivative with respect to x:

Higher-order derivatives with respect to x:

First derivative with respect to z:

Series expansion at the origin:

Compute the indefinite integral using Integrate:

Verify the anti-derivative away from the singular points:

Definite integral:

Integral Transforms  (4)

FourierTransform of UnitTriangle is a squared Sinc function:

FourierSeries:

Find the LaplaceTransform of UnitTriangle:

The convolution of UnitTriangle with itself:

Applications  (4)

Integrate a piecewise function involving UnitTriangle symbolically and numerically:

Solve a differential equation involving UnitBox and UnitTriangle:

Visualize discontinuities in the wavelet domain:

Detail coefficients in the region of discontinuities have larger values:

Generate data from some distribution:

Apply mean shift until all data points have converged:

Gather the result into clusters:

Visualize the clustering:

Properties & Relations  (4)

The derivative of UnitTriangle is a piecewise function:

The derivative of HeavisideLambda is a distribution:

At higher orders, the DiracDelta distribution appears:

Convert into Piecewise:

Multidimensional unit triangle function equals the product of 1D functions for each argument:

UnitTriangle is a special case of BSplineBasis:

See Also

UnitStep  UnitBox  HeavisideLambda  TriangleWave  DiracDelta  HeavisideTheta  HeavisidePi

Related Guides

    ▪
  • Numerical Functions

Related Links

  • MathWorld

History

Introduced in 2008 (7.0)

Wolfram Research (2008), UnitTriangle, Wolfram Language function, https://reference.wolfram.com/language/ref/UnitTriangle.html.

Text

Wolfram Research (2008), UnitTriangle, Wolfram Language function, https://reference.wolfram.com/language/ref/UnitTriangle.html.

CMS

Wolfram Language. 2008. "UnitTriangle." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/UnitTriangle.html.

APA

Wolfram Language. (2008). UnitTriangle. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/UnitTriangle.html

BibTeX

@misc{reference.wolfram_2025_unittriangle, author="Wolfram Research", title="{UnitTriangle}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/UnitTriangle.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_unittriangle, organization={Wolfram Research}, title={UnitTriangle}, year={2008}, url={https://reference.wolfram.com/language/ref/UnitTriangle.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English