Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
Variance
  • See Also
    • StandardDeviation
    • Covariance
    • Correlation
    • TrimmedVariance
    • WinsorizedVariance
    • BiweightMidvariance
    • QnDispersion
    • SnDispersion
    • Mean
    • MeanDeviation
    • MedianDeviation
    • Kurtosis
    • CentralMoment
    • Expectation
  • Related Guides
    • Descriptive Statistics
    • Statistical Data Analysis
    • GPU Computing
    • Math & Counting Operations on Lists
    • Time Series Processing
    • Statistical Moments and Generating Functions
    • Numerical Data
    • Scientific Data Analysis
    • Precollege Education
    • Image Processing & Analysis
    • Finite Mathematics
    • Probability & Statistics
    • GPU Computing with Apple
    • GPU Computing with NVIDIA
    • Date & Time
    • Signal Visualization & Analysis
    • Audio Processing
    • Symbolic Vectors, Matrices and Arrays
  • Tech Notes
    • Basic Statistics
    • Descriptive Statistics
    • Discrete Distributions
    • Continuous Distributions
    • See Also
      • StandardDeviation
      • Covariance
      • Correlation
      • TrimmedVariance
      • WinsorizedVariance
      • BiweightMidvariance
      • QnDispersion
      • SnDispersion
      • Mean
      • MeanDeviation
      • MedianDeviation
      • Kurtosis
      • CentralMoment
      • Expectation
    • Related Guides
      • Descriptive Statistics
      • Statistical Data Analysis
      • GPU Computing
      • Math & Counting Operations on Lists
      • Time Series Processing
      • Statistical Moments and Generating Functions
      • Numerical Data
      • Scientific Data Analysis
      • Precollege Education
      • Image Processing & Analysis
      • Finite Mathematics
      • Probability & Statistics
      • GPU Computing with Apple
      • GPU Computing with NVIDIA
      • Date & Time
      • Signal Visualization & Analysis
      • Audio Processing
      • Symbolic Vectors, Matrices and Arrays
    • Tech Notes
      • Basic Statistics
      • Descriptive Statistics
      • Discrete Distributions
      • Continuous Distributions

Variance[data]

gives the variance estimate of the elements in data.

Variance[dist]

gives the variance of the distribution dist.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Basic Uses  
Array Data  
Image and Audio Data  
Date and Time  
Distributions and Processes  
Applications  
Properties & Relations  
Neat Examples  
See Also
Tech Notes
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • StandardDeviation
    • Covariance
    • Correlation
    • TrimmedVariance
    • WinsorizedVariance
    • BiweightMidvariance
    • QnDispersion
    • SnDispersion
    • Mean
    • MeanDeviation
    • MedianDeviation
    • Kurtosis
    • CentralMoment
    • Expectation
  • Related Guides
    • Descriptive Statistics
    • Statistical Data Analysis
    • GPU Computing
    • Math & Counting Operations on Lists
    • Time Series Processing
    • Statistical Moments and Generating Functions
    • Numerical Data
    • Scientific Data Analysis
    • Precollege Education
    • Image Processing & Analysis
    • Finite Mathematics
    • Probability & Statistics
    • GPU Computing with Apple
    • GPU Computing with NVIDIA
    • Date & Time
    • Signal Visualization & Analysis
    • Audio Processing
    • Symbolic Vectors, Matrices and Arrays
  • Tech Notes
    • Basic Statistics
    • Descriptive Statistics
    • Discrete Distributions
    • Continuous Distributions
    • See Also
      • StandardDeviation
      • Covariance
      • Correlation
      • TrimmedVariance
      • WinsorizedVariance
      • BiweightMidvariance
      • QnDispersion
      • SnDispersion
      • Mean
      • MeanDeviation
      • MedianDeviation
      • Kurtosis
      • CentralMoment
      • Expectation
    • Related Guides
      • Descriptive Statistics
      • Statistical Data Analysis
      • GPU Computing
      • Math & Counting Operations on Lists
      • Time Series Processing
      • Statistical Moments and Generating Functions
      • Numerical Data
      • Scientific Data Analysis
      • Precollege Education
      • Image Processing & Analysis
      • Finite Mathematics
      • Probability & Statistics
      • GPU Computing with Apple
      • GPU Computing with NVIDIA
      • Date & Time
      • Signal Visualization & Analysis
      • Audio Processing
      • Symbolic Vectors, Matrices and Arrays
    • Tech Notes
      • Basic Statistics
      • Descriptive Statistics
      • Discrete Distributions
      • Continuous Distributions

Variance

Variance[data]

gives the variance estimate of the elements in data.

Variance[dist]

gives the variance of the distribution dist.

Details

  • Variance measures dispersion of data or distributions.
  • Variance[data] gives the unbiased estimate of variance.
  • For VectorQ data , the variance estimate is given by for reals and for complexes and =Mean[data].
  • For MatrixQ data, the variance estimate is computed for each column vector, with Variance[{{x1,y1,…},{x2,y2,…},…}] equivalent to {Variance[{x1,x2,…}],Variance[{y1,y2,…}]}. »
  • For ArrayQ data, variance is equivalent to ArrayReduce[Variance,data,1]. »
  • For a real weighted WeightedData[{x1,x2,…},{w1,w2,…}], the variance is given by . »
  • Variance handles both numerical and symbolic data.
  • The data can have the following additional forms and interpretations:
  • Associationthe values (the keys are ignored) »
    SparseArrayas an array, equivalent to Normal[data] »
    QuantityArrayquantities as an array »
    WeightedDataweighted variance, based on the underlying EmpiricalDistribution »
    EventDatabased on the underlying SurvivalDistribution »
    TimeSeries, TemporalData, …vector or array of values (the time stamps ignored) »
    Image,Image3DRGB channel's values or grayscale intensity value »
    Audioamplitude values of all channels »
    DateObject, TimeObjectlist of dates or list of time »
  • For a univariate distribution dist, the variance is given by σ2=Expectation[(x-μ)2,xdist] with μ=Mean[dist]. »
  • For a multivariate distribution dist, the variance is given by {σx2,σy2,…}=Expectation[{(x-μx)2,(y-μy)2,…},{x,y,…}dist]. »
  • For a random process proc, the variance function can be computed for slice distribution at time t, SliceDistribution[proc,t], as σ[t]2=Variance[SliceDistribution[proc,t]]. »

Examples

open all close all

Basic Examples  (4)

Variance of a list of numbers:

Variance of elements in each column:

Variance of a list of dates:

Variance of a parametric distribution:

Scope  (22)

Basic Uses  (7)

Exact input yields exact output:

Approximate input yields approximate output:

Find the variance of WeightedData:

Find the variance of EventData:

Find the variance of TemporalData:

Find the variance of a TimeSeries:

The variance depends only on the values:

Find the variance of data involving quantities:

Array Data  (5)

Variance for a matrix gives columnwise variances:

Variance for a tensor gives columnwise variances at the first level:

Works with large arrays:

When the input is an Association, Variance works on its values:

SparseArray data can be used just like dense arrays:

Find the variance of a QuantityArray:

Image and Audio Data  (2)

Channelwise variance of an RGB image:

Variance of a grayscale image:

On audio objects, Variance works channelwise:

Date and Time  (5)

Compute variance of dates:

Compute the weighted variance of dates:

Compute the variance of dates given in different calendars:

Compute the variance of times:

Compute the variance of times with different time zone specifications:

Distributions and Processes  (3)

Find the variance for univariate distributions:

Multivariate distributions:

Variance for derived distributions:

Data distribution:

Variance function for a random process:

Applications  (5)

Variance is a measure of dispersion:

Compute a moving variance for samples of three random processes:

Compare data volatility by smoothing with moving variance:

Find the mean and variance for the number of great inventions and scientific discoveries in each year from 1860 to 1959:

Investigate weak stationarity of the process data by analyzing variance of slices:

Use a larger plot range to see how relatively small the variations are:

Find the variance of the heights for the children in a class:

Properties & Relations  (11)

The square root of Variance is StandardDeviation:

Variance is a scaled squared Norm of deviations from the Mean:

Variance is a scaled CentralMoment:

The square root of Variance is a scaled RootMeanSquare of the deviations:

Variance is a scaled Mean of squared deviations from the Mean:

Variance is a scaled SquaredEuclideanDistance from the Mean:

Variance is less than MeanDeviation if all absolute deviations are less than 1:

Variance is greater than MeanDeviation if all absolute deviations are greater than 1:

Variance of a random variable as an Expectation:

Variance gives an unbiased sample estimate:

Unbiased means that the expected value of the sample variance with respect to the population distribution equals the variance of the underlying distribution:

Variance gives an unbiased weighted sample estimate:

Unbiased means that the expected value of the sample variance with respect to the population distribution equals the variance of the underlying distribution:

Neat Examples  (1)

The distribution of Variance estimates for 20, 100, and 300 samples:

See Also

StandardDeviation  Covariance  Correlation  TrimmedVariance  WinsorizedVariance  BiweightMidvariance  QnDispersion  SnDispersion  Mean  MeanDeviation  MedianDeviation  Kurtosis  CentralMoment  Expectation

Function Repository: PopulationVariance  VarianceAround  VarianceRatioCI  PooledVariance  GeneralizedVariance  HedgesG

Tech Notes

    ▪
  • Basic Statistics
  • ▪
  • Descriptive Statistics
  • ▪
  • Discrete Distributions
  • ▪
  • Continuous Distributions

Related Guides

    ▪
  • Descriptive Statistics
  • ▪
  • Statistical Data Analysis
  • ▪
  • GPU Computing
  • ▪
  • Math & Counting Operations on Lists
  • ▪
  • Time Series Processing
  • ▪
  • Statistical Moments and Generating Functions
  • ▪
  • Numerical Data
  • ▪
  • Scientific Data Analysis
  • ▪
  • Precollege Education
  • ▪
  • Image Processing & Analysis
  • ▪
  • Finite Mathematics
  • ▪
  • Probability & Statistics
  • ▪
  • GPU Computing with Apple
  • ▪
  • GPU Computing with NVIDIA
  • ▪
  • Date & Time
  • ▪
  • Signal Visualization & Analysis
  • ▪
  • Audio Processing
  • ▪
  • Symbolic Vectors, Matrices and Arrays

History

Introduced in 2003 (5.0) | Updated in 2007 (6.0) ▪ 2023 (13.3) ▪ 2024 (14.1)

Wolfram Research (2003), Variance, Wolfram Language function, https://reference.wolfram.com/language/ref/Variance.html (updated 2024).

Text

Wolfram Research (2003), Variance, Wolfram Language function, https://reference.wolfram.com/language/ref/Variance.html (updated 2024).

CMS

Wolfram Language. 2003. "Variance." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2024. https://reference.wolfram.com/language/ref/Variance.html.

APA

Wolfram Language. (2003). Variance. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Variance.html

BibTeX

@misc{reference.wolfram_2025_variance, author="Wolfram Research", title="{Variance}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/Variance.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_variance, organization={Wolfram Research}, title={Variance}, year={2024}, url={https://reference.wolfram.com/language/ref/Variance.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English