Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
VectorGreater
  • See Also
    • Greater
    • VectorGreaterEqual
    • VectorLess
    • PositiveReals

    • Characters
    • \[VectorGreater]
  • Related Guides
    • Convex Optimization
    • Symbolic Vectors, Matrices and Arrays
    • See Also
      • Greater
      • VectorGreaterEqual
      • VectorLess
      • PositiveReals

      • Characters
      • \[VectorGreater]
    • Related Guides
      • Convex Optimization
      • Symbolic Vectors, Matrices and Arrays

xy or VectorGreater[{x,y}]

yields True for vectors of length n if xi>yi for all components .

xκy or VectorGreater[{x,y},κ]

yields True for x and y if , where κ is a proper convex cone.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Applications  
Properties & Relations  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • Greater
    • VectorGreaterEqual
    • VectorLess
    • PositiveReals

    • Characters
    • \[VectorGreater]
  • Related Guides
    • Convex Optimization
    • Symbolic Vectors, Matrices and Arrays
    • See Also
      • Greater
      • VectorGreaterEqual
      • VectorLess
      • PositiveReals

      • Characters
      • \[VectorGreater]
    • Related Guides
      • Convex Optimization
      • Symbolic Vectors, Matrices and Arrays

VectorGreater

xy or VectorGreater[{x,y}]

yields True for vectors of length n if xi>yi for all components .

xκy or VectorGreater[{x,y},κ]

yields True for x and y if , where κ is a proper convex cone.

Details

  • VectorGreater gives a partial ordering of vectors, matrices and arrays that is compatible with vector space operations, so that and imply for all .
  • VectorGreater is typically used to specify vector inequalities for constrained optimization, inequality solving and integration.
  • When x and y are -vectors, xy is equivalent to . That is, each part of x is greater than the corresponding part of y for the relation to be true.
  • When x and y are dimension arrays, xy is equivalent to . That is, each part of x is greater than the corresponding part of y for the relation to be true.
  • xy remains unevaluated if x or y has non-numeric elements; typically gives True or False otherwise.
  • When x is an n-vector and y is a numeric scalar, xy yields True if xi>y for all components .
  • By using the character , entered as v> or \[VectorGreater], with subscripts vector inequalities can be entered as follows:
  • xyVectorGreater[{x,y}]the standard vector inequality
    x_(kappa)yVectorGreater[{x,y},κ]vector inequality defined by a cone κ
  • In general, one can use a proper convex cone κ to specify a vector inequality. The set is the same as κ.
  • Possible cone specifications κ in for vectors x include:
  • {"NonNegativeCone", n}TemplateBox[{n}, NonNegativeConeList] such that
    {"NormCone", n}TemplateBox[{n}, NormConeList] such that Norm[{x1,…,xn-1}]<xn
    "ExponentialCone"TemplateBox[{}, ExponentialConeString] such that
    "DualExponentialCone"TemplateBox[{}, DualExponentialConeString] such that
    {"PowerCone",α}TemplateBox[{alpha}, PowerConeList] such that
    {"DualPowerCone",α}TemplateBox[{alpha}, DualPowerConeList] such that
  • Possible cone specifications κ in for matrices x include:
  • "NonNegativeCone"TemplateBox[{}, NonNegativeConeString] such that
    {"SemidefiniteCone", n}TemplateBox[{n}, SemidefiniteConeList]symmetric positive definite matrices
  • Possible cone specifications κ in for arrays x include:
  • "NonNegativeCone"TemplateBox[{}, NonNegativeConeString] such that
  • For exact numeric quantities, VectorGreater internally uses numerical approximations to establish numerical ordering. This process can be affected by the setting of the global variable $MaxExtraPrecision.

Examples

open all close all

Basic Examples  (3)

xy yields True when xi > yi is True for all i=1,…,n:

xy yields False when xi ≤ yi for any i=1,…,n:

Represent a vector inequality:

When v is replaced by numerical vector space elements, the inequality gives True or False:

The cone is also given by :

The cone is also given by :

The cuboid is also given by :

Scope  (7)

Determine if all of the elements in a vector are non-negative:

Determine if all components are less than or equal to 1:

!xy does not imply xy:

For each component, !xi≥yi does imply xi<yi:

Compare the components of two matrices:

Compare symmetric matrices:

Represent the condition that Norm[{x,y}]<=1:

Represent the condition that :

Show the boundary of where for non-negative x,y with α between 0 and 1:

Applications  (1)

VectorGreater is a fast way to compare many elements:

Properties & Relations  (3)

VectorGreater is compatible with a vector space operation:

Adding vectors to both sides of for any vector :

Multiplying by positive constants for any :

xκy are (strict) partial orders, i.e. irreflexive, asymmetric and transitive:

Irreflexive, i.e. for all elements so no element is related to itself:

Asymmetric, i.e. if then :

Transitive, i.e. if and then :

xκy are partial orders but not total orders, so there are incomparable elements:

Neither nor is true, because and are incomparable elements:

The set of vectors and . These are the only comparable elements to :

See Also

Greater  VectorGreaterEqual  VectorLess  PositiveReals

Characters: \[VectorGreater]

Related Guides

    ▪
  • Convex Optimization
  • ▪
  • Symbolic Vectors, Matrices and Arrays

History

Introduced in 2019 (12.0)

Wolfram Research (2019), VectorGreater, Wolfram Language function, https://reference.wolfram.com/language/ref/VectorGreater.html.

Text

Wolfram Research (2019), VectorGreater, Wolfram Language function, https://reference.wolfram.com/language/ref/VectorGreater.html.

CMS

Wolfram Language. 2019. "VectorGreater." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/VectorGreater.html.

APA

Wolfram Language. (2019). VectorGreater. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/VectorGreater.html

BibTeX

@misc{reference.wolfram_2025_vectorgreater, author="Wolfram Research", title="{VectorGreater}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/VectorGreater.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_vectorgreater, organization={Wolfram Research}, title={VectorGreater}, year={2019}, url={https://reference.wolfram.com/language/ref/VectorGreater.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English