Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
ComplexListPlot
  • See Also
    • ListPlot
    • ReImPlot
    • AbsArgPlot
    • ComplexPlot
    • ComplexPlot3D
    • ReIm
    • Abs
    • Arg
    • I
    • ListPolarPlot
    • PolarPlot
    • MandelbrotSetPlot
    • JuliaSetPlot
  • Related Guides
    • Complex Visualization
    • See Also
      • ListPlot
      • ReImPlot
      • AbsArgPlot
      • ComplexPlot
      • ComplexPlot3D
      • ReIm
      • Abs
      • Arg
      • I
      • ListPolarPlot
      • PolarPlot
      • MandelbrotSetPlot
      • JuliaSetPlot
    • Related Guides
      • Complex Visualization

ComplexListPlot[{z1,z2,…}]

plots complex numbers z1, z2, … as points in the complex plane.

ComplexListPlot[{data1,data2,…}]

plots data from all datai.

ComplexListPlot[{…,w[datai,…],…}]

plots data_(i) with features defined by the symbolic wrapper w.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Data  
Tabular Data  
Special Data  
Wrappers  
Labeling and Legending  
Presentation  
Options  
AspectRatio  
Axes  
AxesLabel  
Show More Show More
AxesOrigin  
AxesStyle  
ClippingStyle  
ColorFunction  
ColorFunctionScaling  
Frame  
FrameLabel  
FrameStyle  
FrameTicks  
FrameTicksStyle  
ImageSize  
InterpolationOrder  
Joined  
LabelingFunction  
LabelingSize  
MaxPlotPoints  
Mesh  
MeshFunctions  
MeshShading  
PlotHighlighting  
PlotLabel  
PlotLabels  
PlotLegends  
PlotMarkers  
PlotRange  
PlotStyle  
PlotTheme  
PolarAxes  
PolarAxesOrigin  
PolarGridLines  
PolarTicks  
ScalingFunctions  
Ticks  
TicksStyle  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • ListPlot
    • ReImPlot
    • AbsArgPlot
    • ComplexPlot
    • ComplexPlot3D
    • ReIm
    • Abs
    • Arg
    • I
    • ListPolarPlot
    • PolarPlot
    • MandelbrotSetPlot
    • JuliaSetPlot
  • Related Guides
    • Complex Visualization
    • See Also
      • ListPlot
      • ReImPlot
      • AbsArgPlot
      • ComplexPlot
      • ComplexPlot3D
      • ReIm
      • Abs
      • Arg
      • I
      • ListPolarPlot
      • PolarPlot
      • MandelbrotSetPlot
      • JuliaSetPlot
    • Related Guides
      • Complex Visualization

ComplexListPlot

ComplexListPlot[{z1,z2,…}]

plots complex numbers z1, z2, … as points in the complex plane.

ComplexListPlot[{data1,data2,…}]

plots data from all datai.

ComplexListPlot[{…,w[datai,…],…}]

plots data_(i) with features defined by the symbolic wrapper w.

Details and Options

  • The datai have the following forms and interpretations:
  • <|"k1"z1,"k2"z2,…|>values {z1,z2,…}
    {z1"lbl1",z2"lbl2",…}, {z1,z2,…}{"lbl1","lbl2",…}values {z1,z2,…} with labels {lbl1,lbl2,…}
    SparseArrayvalues as a normal array
  • ComplexListPlot[Tabular[…]cspec] extracts and plots values from the tabular object using the column specification cspec.
  • The following forms of column specifications cspec are allowed for plotting tabular data:
  • colplot complex values from column col
    {col1,col2,…}plot values from columns col1, col2, …
  • The following wrappers w can be used for the datai:
  • Annotation[datai,label]provide an annotation for the data
    Button[datai,action]define an action to execute when the data is clicked
    Callout[datai,label]label the data with a callout
    Callout[datai,label,pos]place the callout at relative position pos
    EventHandler[datai,…]define a general event handler for the data
    Highlighted[datai,effect]dynamically highlight fi with an effect
    Highlighted[datai,Placed[effect,pos]]statically highlight fi with an effect at position pos
    Hyperlink[datai,uri]make the data a hyperlink
    Labeled[datai,label]label the data
    Labeled[datai,label,pos]place the label at relative position pos
    Legended[datai,label]identify the data in a legend
    PopupWindow[datai,cont]attach a popup window to the data
    StatusArea[datai,label]display in the status area on mouseover
    Style[datai,styles]show the data using the specified styles
    Tooltip[datai,label]attach a tooltip to the data
    Tooltip[datai]use data values as tooltips
  • Wrappers w can be applied at multiple levels:
  • {…,w[zi],…}wrap the value zi in data
    w[datai]wrap the data
    w[{data1,…}]wrap a collection of datai
    w1[w2[…]]use nested wrappers
  • Callout, Labeled and Placed can use the following positions pos:
  • Automaticautomatically placed labels
    Above, Below, Before, Afterpositions around the data
    xnear the data at a position x
    Scaled[s]scaled position s along the data
    {s,Above},{s,Below},…relative position at position s along the data
    {pos,epos}epos in label placed at relative position pos of the data
  • ComplexListPlot has the same options as Graphics, with the following additions and changes: [List of all options]
  • Axes Truewhether to draw axes
    Joined Falsewhether to join points
    LabelingFunction Automatichow to label points
    LabelingSize Automaticmaximum size of callouts and labels
    PerformanceGoal$PerformanceGoalaspects of performance to try to optimize
    PlotHighlighting Automatichighlighting effect for curves
    PlotLabel Noneoverall label for the plot
    PlotLabels Nonelabels for data
    PlotLegends Nonelegends for data
    PlotMarkers Nonemarkers to use to indicate each point
    PlotRange Automaticrange of values to include
    PlotRangeClippingTruewhether to clip at the plot range
    PlotStyle Automaticgraphics directives to determine styles of points
    PlotTheme $PlotThemeoverall theme for the plot
    PolarAxes Falsewhether to draw polar axes
    PolarAxesOrigin Automaticwhere to draw polar axes
    PolarGridLines Nonepolar gridlines to draw
    PolarTicks Automaticpolar axes ticks
    ScalingFunctions Nonehow to scale individual coordinates
  • LabelingFunction->f specifies that each point should have a label given by f[value,index,lbls], where value is the value associated with the point, index is its position in the data and lbls is the list of relevant labels.
  • Typical settings for PlotLegends include:
  • Noneno legend
    Automaticautomatically determine legend
    {lbl1,lbl2,…}use lbl1, lbl2, … as legend labels
    Placed[lspec,…]specify placement for legend
  • ColorData["DefaultPlotColors"] gives the default sequence of colors used by PlotStyle.
  • The arguments supplied to functions in MeshFunctionsare x, y, θ, r where θ and r are the argument and radius of the zi. Functions in ColorFunction are by default supplied with scaled versions of these arguments.
  • Possible highlighting effects for Highlighted and PlotHighlighting include:
  • stylehighlight the indicated data
    "Ball"highlight and label the indicated point in data
    "Dropline"highlight and label the indicated point in data with droplines to the axes
    "XSlice"highlight and label all points along a vertical slice
    "YSlice"highlight and label all points along a horizontal slice
    Placed[effect,pos]statically highlight the given position pos
  • Highlight position specifications pos include:
  • x, {x}effect at {x,y}, with y chosen automatically
    {x,y}effect at {x,y}
    {pos1,pos2,…}multiple positions posi
  • ScalingFunctions->"scale" scales the modulus of the zi. ScalingFunctions{"scalex","scaley"} scales the and imaginary components, respectively.
  • List of all options
  • Highlight options with settings specific to ComplexListPlot
  • AlignmentPointCenterthe default point in the graphic to align with
    AspectRatioAutomaticratio of height to width
    AxesTruewhether to draw axes
    AxesLabelNoneaxes labels
    AxesOriginAutomaticwhere axes should cross
    AxesStyle{}style specifications for the axes
    BackgroundNonebackground color for the plot
    BaselinePositionAutomatichow to align with a surrounding text baseline
    BaseStyle{}base style specifications for the graphic
    ContentSelectableAutomaticwhether to allow contents to be selected
    CoordinatesToolOptionsAutomaticdetailed behavior of the coordinates tool
    Epilog{}primitives rendered after the main plot
    FormatTypeTraditionalFormthe default format type for text
    FrameFalsewhether to put a frame around the plot
    FrameLabelNoneframe labels
    FrameStyle{}style specifications for the frame
    FrameTicksAutomaticframe ticks
    FrameTicksStyle{}style specifications for frame ticks
    GridLinesNonegrid lines to draw
    GridLinesStyle{}style specifications for grid lines
    ImageMargins0.the margins to leave around the graphic
    ImagePaddingAllwhat extra padding to allow for labels etc.
    ImageSizeAutomaticthe absolute size at which to render the graphic
    JoinedFalsewhether to join points
    LabelingFunctionAutomatichow to label points
    LabelingSizeAutomaticmaximum size of callouts and labels
    LabelStyle{}style specifications for labels
    MethodAutomaticdetails of graphics methods to use
    PerformanceGoal$PerformanceGoalaspects of performance to try to optimize
    PlotHighlightingAutomatichighlighting effect for curves
    PlotLabelNoneoverall label for the plot
    PlotLabelsNonelabels for data
    PlotLegendsNonelegends for data
    PlotMarkersNonemarkers to use to indicate each point
    PlotRangeAutomaticrange of values to include
    PlotRangeClippingTruewhether to clip at the plot range
    PlotRangePaddingAutomatichow much to pad the range of values
    PlotRegionAutomaticthe final display region to be filled
    PlotStyleAutomaticgraphics directives to determine styles of points
    PlotTheme$PlotThemeoverall theme for the plot
    PolarAxesFalsewhether to draw polar axes
    PolarAxesOriginAutomaticwhere to draw polar axes
    PolarGridLinesNonepolar gridlines to draw
    PolarTicksAutomaticpolar axes ticks
    PreserveImageOptionsAutomaticwhether to preserve image options when displaying new versions of the same graphic
    Prolog{}primitives rendered before the main plot
    RotateLabelTruewhether to rotate y labels on the frame
    ScalingFunctionsNonehow to scale individual coordinates
    TicksAutomaticaxes ticks
    TicksStyle{}style specifications for axes ticks

Examples

open all close all

Basic Examples  (4)

Plot a set of complex numbers:

Plot multiple sets of complex numbers:

Plot several data_i with a legend:

Label each point with a callout:

Scope  (39)

Data  (7)

A list of complex values is plotted as a list of {Re[z_(i)],Im[z_(i)]} pairs:

Plot multiple sets of regular data:

Non-numeric and missing data is excluded:

Use MaxPlotPoints to limit the number of points used:

PlotRange is selected automatically:

Use PlotRange to focus on areas of interest:

Use ScalingFunctions to scale the axes:

Tabular Data  (1)

Get tabular data of the results of running Newton's method to solve with random starting seeds:

Plot all the points in the table:

Use PivotToColumns to generate columns for each basin of attraction:

Plot each number per region separately:

Special Data  (4)

Specify strings to use as labels:

Specify a location for labels:

Numeric values in an Association are used as the (x,y) coordinates:

Plot data in a SparseArray:

Wrappers  (6)

Use wrappers on individual data, datasets or collections of datasets:

Wrappers can be nested:

Use a specific label for all of the points:

Label points with automatically positioned text:

Use PopupWindow to click an eigenvalue to see a corresponding eigenvector:

Button can be used to trigger any action:

Labeling and Legending  (15)

Label points with automatically positioned text:

Place the labels relative to the points:

Label data with Labeled:

Label data with PlotLabels:

Place the label near the points at a particular x value:

Use a scaled position:

Specify the text position relative to the point:

Label data automatically with Callout:

Place a label with a specific location:

Specify label names with LabelingFunction:

For dense sets of points, some labels may be turned into tooltips by default:

Increasing the size of the plot will show more labels:

Include legends for each datai:

Use Legended to provide a legend for a specific dataset:

Use Placed to change the legend location:

Use association keys as labels:

Plots usually have interactive callouts showing the coordinates when you mouse over them:

Presentation  (6)

Multiple datasets are automatically colored to be distinct:

Provide explicit styling to different sets:

Use a plot theme:

Include legends for each dataset:

Use Legended to provide a legend for a specific dataset:

Provide an interactive Tooltip for the data:

Use shapes to distinguish different datasets:

Use labels to distinguish different datasets:

Use Joined to connect datasets with lines:

Use InterpolationOrder to smooth joined data:

Options  (156)

AspectRatio  (4)

By default, the ratio of the height to width for the plot is determined automatically:

Use numerical value to specify the height to width ratio:

Make the height the same as the width with AspectRatio1:

AspectRatioFull adjusts the height and width to tightly fit inside other constructs:

Axes  (3)

By default, ComplexListPlot draws axes:

Use AxesOrigin to specify where the axes intersect:

Turn each axis on individually:

AxesLabel  (3)

No axes labels are drawn by default:

Place a label on the axis:

Specify axes labels:

AxesOrigin  (2)

The position of the axes is determined automatically:

Specify an explicit origin for the axes:

AxesStyle  (4)

Change the style for the axes:

Specify the style of each axis:

Use different styles for the ticks and the axes:

Use different styles for the labels and the axes:

ClippingStyle  (4)

ClippingStyle requires at least one dataset to be Joined:

Omit clipped regions of the plot:

Show clipped regions as red at the bottom and thick at the top:

Show clipped regions as red and thick:

ColorFunction  (3)

Color by scaled x, y, theta and r coordinates:

ColorFunction has higher priority than PlotStyle for coloring the curve:

Use Automatic in MeshShading to use ColorFunction:

ColorFunctionScaling  (4)

ColorFunctionScaling requires at least one dataset to be Joined:

Color the curve based on the scaled y value:

Color the curve based on the unscaled y value:

Color by unscaled x, y, theta and r coordinates:

Frame  (3)

Draw a frame around the plot:

Draw a frame on the left and right edges:

Draw a frame on the left and bottom edges:

FrameLabel  (4)

Place a label along the bottom edge of the frame:

Place labels on the bottom and left edges:

Place labels on each of the edges in the frame:

Use a customized style for both labels and frame tick labels:

FrameStyle  (2)

Specify a style for the frame:

Specify a style for each frame edge:

FrameTicks  (9)

Frame ticks are placed automatically by default:

Use a frame with no ticks:

Use frame ticks on the bottom edge:

By default, the top and right edges have tick marks but no tick labels:

Use All to include tick labels on all edges:

Place tick marks at specific positions:

Draw frame tick marks at specified positions with specific labels:

Specify the lengths for tick marks as a fraction of the graphics size:

Use different sizes in the positive and negative directions for each tick mark:

Specify a style for each frame tick:

Construct a function that places frame ticks at the midpoint and extremes of the frame edge:

FrameTicksStyle  (3)

By default, frame ticks and frame tick labels use the same styles as the frame:

Specify an overall style for the ticks, including the labels:

Use different styles for the different frame edges:

ImageSize  (8)

Use named sizes such as Tiny, Small, Medium and Large:

Specify the width of the plot:

Specify the height of the plot:

Allow the width and height to be up to a certain size:

Specify the width and height for a graphic, padding with space if necessary:

Setting AspectRatioFull will fill the available space:

Use maximum sizes for the width and height:

Use ImageSizeFull to fill the available space in an object:

Specify the image size as a fraction of the available space:

The number of points that are labeled directly may depend on the image size:

Smaller graphics will have fewer labeled points:

Larger graphics will have more labeled points:

InterpolationOrder  (4)

InterpolationOrder requires at least one dataset to be Joined:

By default, linear interpolation is used:

Use zero-order or piecewise-constant interpolation:

Interpolation order 0 to 3:

Joined  (3)

Join the points in a dataset:

Join the first dataset with a line, but use points for the second dataset:

Join the dataset with a line and show the original points:

LabelingFunction  (7)

A Rule can be used to label points if the lists of values and labels are the same length:

A list of rules and values can be used to label selected points:

Use LabelingFunctionNone to suppress the labels:

Put the labels above the points:

Put them in a Tooltip:

Label the points as ordered pairs:

Label the points with their indices:

LabelingSize  (3)

Textual labels are shown at their actual sizes:

Specify a maximum size for textual labels:

Image labels are automatically resized:

Specify a maximum size for image labels:

Show image labels at their natural sizes:

MaxPlotPoints  (1)

Use MaxPlotPoints to limit the number of points used:

Mesh  (6)

Mesh requires at least one dataset to be Joined:

The initial and final sampling meshes are typically the same:

Interpolated data may introduce points:

Use 20 mesh levels evenly spaced in the direction:

Use an explicit list of values for the mesh in the direction:

Use explicit styles at specific points:

MeshFunctions  (3)

MeshFunctions requires at least one dataset to be Joined:

Show 5 mesh levels in the direction (red) and 10 in the direction (blue):

Use a mesh evenly spaced in the , , and directions:

MeshShading  (7)

MeshShading requires at least one dataset to be Joined:

Alternate red and blue segments of equal width in the direction:

Use None to remove segments:

MeshShading can be used with PlotStyle:

MeshShading has higher priority than PlotStyle:

Use PlotStyle for some segments by setting MeshShading to Automatic:

MeshShading can be used with ColorFunction:

PlotHighlighting  (7)

Plots have interactive coordinate callouts with the default setting PlotHighlightingAutomatic:

Use PlotHighlightingNone to disable the highlighting for the entire plot:

Use Highlighted[…,None] to disable highlighting for a single set:

Move the mouse over a set of points to highlight it using arbitrary graphics directives:

Move the mouse over the points to highlight them with balls and labels:

Move the mouse over the curve to highlight it with a label and droplines to the axes:

Use a component that shows the points on the plot closest to the position of the mouse cursor:

Specify the style for the points:

Use a component that shows the coordinates on the points closest to the mouse cursor:

Use Callout options to change the appearance of the label:

Combine components to create a custom effect:

PlotLabel  (1)

Add an overall label to the plot:

PlotLabels  (5)

Specify text to label sets of points:

Place the labels above the points:

Use callouts to identify the points:

Use the keys from an Association as labels:

Use None to not add a label:

PlotLegends  (6)

Generate a legend using labels:

Generate a legend using placeholders:

Legends use the same styles as the plot:

Use Placed to specify the legend placement:

Place the legend inside the plot:

Use PlotLegends to change the appearance:

PlotMarkers  (8)

ComplexListPlot normally uses distinct colors to distinguish different sets of data:

Automatically use colors and shapes to distinguish sets of data:

Use shapes only:

Change the size of the default plot markers:

Use arbitrary text for plot markers:

Use explicit graphics for plot markers:

Use the same symbol for all the sets of data:

Explicitly use a symbol and size:

PlotRange  (4)

PlotRange is automatically calculated:

Show the whole dataset:

Explicitly choose the x and y ranges:

Implicitly choose the x and y ranges by giving complex coordinates of the bottom-left and top-right corners:

PlotStyle  (7)

Use different style directives:

By default, different styles are chosen for multiple datasets:

Explicitly specify the style for different datasets:

PlotStyle applies to both curves and points:

PlotStyle can be combined with ColorFunction:

PlotStyle can be combined with MeshShading:

MeshStyle by default uses the same style as PlotStyle:

PlotTheme  (2)

Use a theme with simple ticks and grid lines in a bright color scheme:

Change the color scheme:

PolarAxes  (2)

Add polar axes and polar grid lines:

Control the radial and polar axes independently:

PolarAxesOrigin  (2)

Specify the angular axes and radial axes to intersect at :

Place radial axes at the right of the graph:

PolarGridLines  (2)

Use automatically chosen polar grid lines:

Draw grid lines at the specified positions:

PolarTicks  (4)

Place polar tick marks and labels automatically:

Modify the angular ticks:

Indicate angles with degrees:

Place polar tick marks at the specified positions:

ScalingFunctions  (3)

A single scaling function scales the data radially:

Specifying two scaling functions scales the data in the x and y directions separately:

None indicates no scaling in the specified direction:

Ticks  (9)

Ticks are placed automatically for each axis:

Use TicksNone to draw axes without any tick marks:

Use ticks on the axis, but not the imaginary axis:

Place tick marks at specific positions:

Draw tick marks at the specified positions with specific labels:

Use specific ticks on one axis and automatic ticks on the other:

Specify the lengths for ticks as a fraction of graphics size:

Use different sizes in the positive and negative directions for each tick:

Specify a style for each tick:

Construct a function that places ticks at the midpoint and extremes of the axis:

TicksStyle  (4)

By default, the ticks and tick labels use the same styles as the axis:

Specify an overall ticks style, including the tick labels:

Specify ticks style for each of the axes:

Use a different style for the tick labels and tick marks:

Applications  (9)

Plot roots of unity:

Plot a discrete time signal and its spectrum:

Graph zeros of the zeta function:

Graph eigenvalues of a Cauchy matrix:

Graphs solutions of :

Show Gershgorin discs and eigenvalues for a matrix:

Show the eigenvalues for a PDE problem. Seek solutions of the structurally damped wave equation , of the form :

Visualize iterations of Newton's method:

The eigenvalues of bipartite graphs are symmetric about the imaginary axis:

Properties & Relations  (9)

Use ListPlot, ListLinePlot or ListPolarPlot for real data:

ComplexListPlot is closely related to ListPlot:

Use ComplexPlot to use color to show the argument and magnitude of a function:

Use ComplexPlot3D to use the axis for the magnitude:

Use ComplexArrayPlot for arrays of complex numbers:

Use ReImPlot and AbsArgPlot to plot complex values over the real numbers:

ComplexContourPlot plots curves over the complexes:

ComplexRegionPlot plots regions over the complexes:

ComplexStreamPlot and ComplexVectorPlot treat complex numbers as directions:

Possible Issues  (2)

Real-valued data is plotted along the axis.:

Radial scaling is different when using the same scaling functions in the real and imaginary directions:

Neat Examples  (3)

Eigenvalue analysis of the weighted adjacency matrix of the wins by teams in the National Hockey League in the 2010–2011 regular season:

Symmetry in the real parts of the eigenvalues of an adjacency matrix for a graph suggests that the graph may be bipartite, but in this case the graph is not bipartite:

Compute an integer two times the numbers in {0,1,…,n-1} modulo :

Graphically represent the integer as the point in the complex plane and connect the dots between the points representing and TemplateBox[{{m,  , x}, n}, Mod]:

If you use a larger value of , then an envelope appears:

Use multiples of three and five instead:

See Also

ListPlot  ReImPlot  AbsArgPlot  ComplexPlot  ComplexPlot3D  ReIm  Abs  Arg  I  ListPolarPlot  PolarPlot  MandelbrotSetPlot  JuliaSetPlot

Related Guides

    ▪
  • Complex Visualization

History

Introduced in 2019 (12.0) | Updated in 2023 (13.3) ▪ 2025 (14.2)

Wolfram Research (2019), ComplexListPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ComplexListPlot.html (updated 2025).

Text

Wolfram Research (2019), ComplexListPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ComplexListPlot.html (updated 2025).

CMS

Wolfram Language. 2019. "ComplexListPlot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/ComplexListPlot.html.

APA

Wolfram Language. (2019). ComplexListPlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ComplexListPlot.html

BibTeX

@misc{reference.wolfram_2025_complexlistplot, author="Wolfram Research", title="{ComplexListPlot}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/ComplexListPlot.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_complexlistplot, organization={Wolfram Research}, title={ComplexListPlot}, year={2025}, url={https://reference.wolfram.com/language/ref/ComplexListPlot.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English