Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
FeatureSpacePlot
  • See Also
    • FeatureSpacePlot3D
    • FeatureExtract
    • DimensionReduce
    • ListPlot
    • FeatureExtractor
    • FeatureExtraction
    • PointValuePlot
  • Related Guides
    • Machine Learning
    • Data Visualization
    • Unsupervised Machine Learning
    • High-Dimensional Visualization
    • Signal Processing
    • Computer Vision
    • Image Computation for Microscopy
    • Speech Computation
    • Audio Processing
    • Audio Analysis
    • Video Processing
    • Video Analysis
    • See Also
      • FeatureSpacePlot3D
      • FeatureExtract
      • DimensionReduce
      • ListPlot
      • FeatureExtractor
      • FeatureExtraction
      • PointValuePlot
    • Related Guides
      • Machine Learning
      • Data Visualization
      • Unsupervised Machine Learning
      • High-Dimensional Visualization
      • Signal Processing
      • Computer Vision
      • Image Computation for Microscopy
      • Speech Computation
      • Audio Processing
      • Audio Analysis
      • Video Processing
      • Video Analysis

FeatureSpacePlot[{example1,example2,…}]

plots features extracted from the examplei as a scatter plot.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Data  
Tabular Data  
Wrappers  
Labeling  
Presentation  
Options  
AspectRatio  
Axes  
AxesLabel  
Show More Show More
AxesOrigin  
AxesStyle  
Background  
FeatureExtractor  
Frame  
FrameLabel  
FrameStyle  
LabelingFunction  
LabelingSize  
LabelingTarget  
Method  
PerformanceGoal  
PlotInteractivity  
PlotLabel  
PlotMarkers  
PlotRangePadding  
PlotStyle  
PlotTheme  
RandomSeeding  
Applications  
Properties & Relations  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • FeatureSpacePlot3D
    • FeatureExtract
    • DimensionReduce
    • ListPlot
    • FeatureExtractor
    • FeatureExtraction
    • PointValuePlot
  • Related Guides
    • Machine Learning
    • Data Visualization
    • Unsupervised Machine Learning
    • High-Dimensional Visualization
    • Signal Processing
    • Computer Vision
    • Image Computation for Microscopy
    • Speech Computation
    • Audio Processing
    • Audio Analysis
    • Video Processing
    • Video Analysis
    • See Also
      • FeatureSpacePlot3D
      • FeatureExtract
      • DimensionReduce
      • ListPlot
      • FeatureExtractor
      • FeatureExtraction
      • PointValuePlot
    • Related Guides
      • Machine Learning
      • Data Visualization
      • Unsupervised Machine Learning
      • High-Dimensional Visualization
      • Signal Processing
      • Computer Vision
      • Image Computation for Microscopy
      • Speech Computation
      • Audio Processing
      • Audio Analysis
      • Video Processing
      • Video Analysis

FeatureSpacePlot

FeatureSpacePlot[{example1,example2,…}]

plots features extracted from the examplei as a scatter plot.

Details and Options

  • FeatureSpacePlot can be used on many types of data, including numerical, textual, sounds and images, and combinations of these.
  • Each examplei can be a single data element, a list of data elements, an association of data elements, or a Dataset object.
  • FeatureSpacePlot[Tabular[…]cspec] extracts and plots values from the tabular object using the column specification cspec.
  • The following forms of column specifications cspec are allowed for plotting tabular data:
  • {col1,…,coln}form examples from the values in the column coli
  • When possible, FeatureSpacePlot uses the examplei as the point marker in the scatter plot.
  • The following forms can be used to specify alternative markers:
  • {example1marker1,…}examples and markers in a list of rules
    {example1,…}{marker1,…}examples and markers grouped together
    <|marker1example1,…|>association keys as markers
  • Wrappers w can be applied at multiple levels:
  • {…,w[examplei],…}wrap the value examplei
    w[{example1,example2,…}]wrap all the examples
    w1[w2[…]]use nested wrappers
  • The following wrappers w can be used for the examplei:
  • Annotation[examplei,label]provide an annotation for the example
    Button[examplei,action]define an action to execute when the example is clicked
    Callout[examplei,label]label the example with a callout
    Callout[examplei,label,pos]place the callout at relative position pos
    EventHandler[examplei,…]define a general event handler for the example
    Hyperlink[examplei,uri]make the example a hyperlink
    Labeled[examplei,label]label the example
    Labeled[examplei,label,pos]place the label at relative position pos
    Legended[examplei,label]identify the example in a legend
    PopupWindow[examplei,cont]attach a popup window to the example
    StatusArea[examplei,label]display in the status area on mouseover
    Style[examplei,styles]show the example using the specified styles
    Tooltip[examplei,label]attach a tooltip to the example
    Tooltip[examplei]use example values as tooltips
  • Callout, Labeled, Placed and LabelingFunction can use the following positions pos:
  • Automaticautomatically placed labels
    Above, Below, Before, Afterpositions around the data
    Centeruse the label as the point marker
    xnear the data at a position x
    {pos,epos}epos in label placed at relative position pos of the data
  • FeatureSpacePlot has the same options as Graphics, with the following additions and changes: [List of all options]
  • AspectRatio 1ratio of height to width
    Axes Falsewhether to draw axes
    FeatureExtractor Identityhow to extract features from which to learn
    FeatureNamesAutomaticnames to assign to elements of the examplei
    FeatureTypesAutomaticfeature types to assume for elements of the examplei
    FillingNonehow to fill in stems for each point
    FillingStyleAutomaticstyle to use for filling
    LabelingFunction Automatichow to label points
    LabelingSize Automaticsize of callouts and labels
    LabelingTarget Automatichow to determine automatic label positions
    MaxPlotPointsAutomaticthe maximum number of points to include
    PerformanceGoal $PerformanceGoalaspects of performance to try to optimize
    PlotInteractivity $PlotInteractivitywhether to allow interactive elements
    PlotLabel Noneoverall label for the plot
    PlotLabelsNonelabels for data
    PlotLegendsNonelegends for data
    PlotMarkers Nonemarkers to use to indicate each point
    PlotRangeAutomaticrange of values to include
    PlotRangeClippingTruewhether to clip at the plot range
    PlotStyle Automaticgraphics directives to determine styles of points
    PlotTheme $PlotThemeoverall theme for the plot
    RandomSeeding 1234how to seed random numbers
  • LabelingFunctionpos places the default labels at the position pos.
  • LabelingFunction->f specifies that each point should have a label given by f[value,index,lbls], where value is the value associated with the point, index is its position in the data and lbls is the list of relevant labels.
  • ColorData["DefaultPlotColors"] gives the default sequence of colors used by PlotStyle.
  • Possible settings for Method include:
  • Automaticautomatically chosen method
    "LatentSemanticAnalysis"latent semantic analysis method
    "Linear"automatically choose the best linear method
    "LowRankMatrixFactorization"use a low-rank matrix factorization algorithm
    "PrincipalComponentsAnalysis"principal components analysis method
    "TSNE"t-distributed stochastic neighbor embedding algorithm
    "UMAP"uniform manifold approximation and projection
  • List of all options
  • Highlight options with settings specific to FeatureSpacePlot
  • AlignmentPointCenterthe default point in the graphic to align with
    AspectRatio1ratio of height to width
    AxesFalsewhether to draw axes
    AxesLabelNoneaxes labels
    AxesOriginAutomaticwhere axes should cross
    AxesStyle{}style specifications for the axes
    BackgroundNonebackground color for the plot
    BaselinePositionAutomatichow to align with a surrounding text baseline
    BaseStyle{}base style specifications for the graphic
    ContentSelectableAutomaticwhether to allow contents to be selected
    CoordinatesToolOptionsAutomaticdetailed behavior of the coordinates tool
    Epilog{}primitives rendered after the main plot
    FeatureExtractorIdentityhow to extract features from which to learn
    FeatureNamesAutomaticnames to assign to elements of the examplei
    FeatureTypesAutomaticfeature types to assume for elements of the examplei
    FillingNonehow to fill in stems for each point
    FillingStyleAutomaticstyle to use for filling
    FormatTypeTraditionalFormthe default format type for text
    FrameFalsewhether to put a frame around the plot
    FrameLabelNoneframe labels
    FrameStyle{}style specifications for the frame
    FrameTicksAutomaticframe ticks
    FrameTicksStyle{}style specifications for frame ticks
    GridLinesNonegrid lines to draw
    GridLinesStyle{}style specifications for grid lines
    ImageMargins0.the margins to leave around the graphic
    ImagePaddingAllwhat extra padding to allow for labels etc.
    ImageSizeAutomaticthe absolute size at which to render the graphic
    LabelingFunctionAutomatichow to label points
    LabelingSizeAutomaticsize of callouts and labels
    LabelingTargetAutomatichow to determine automatic label positions
    LabelStyle{}style specifications for labels
    MaxPlotPointsAutomaticthe maximum number of points to include
    MethodAutomaticdetails of graphics methods to use
    PerformanceGoal$PerformanceGoalaspects of performance to try to optimize
    PlotInteractivity$PlotInteractivitywhether to allow interactive elements
    PlotLabelNoneoverall label for the plot
    PlotLabelsNonelabels for data
    PlotLegendsNonelegends for data
    PlotMarkersNonemarkers to use to indicate each point
    PlotRangeAutomaticrange of values to include
    PlotRangeClippingTruewhether to clip at the plot range
    PlotRangePaddingAutomatichow much to pad the range of values
    PlotRegionAutomaticthe final display region to be filled
    PlotStyleAutomaticgraphics directives to determine styles of points
    PlotTheme$PlotThemeoverall theme for the plot
    PreserveImageOptionsAutomaticwhether to preserve image options when displaying new versions of the same graphic
    Prolog{}primitives rendered before the main plot
    RandomSeeding1234how to seed random numbers
    RotateLabelTruewhether to rotate y labels on the frame
    TicksAutomaticaxes ticks
    TicksStyle{}style specifications for axes ticks

Examples

open all close all

Basic Examples  (6)

Plot the features of the shapes of alphabets:

Plot the features extracted from images:

Change the size of images used as labels:

Use Callout to place labels:

Extract features from a simple dataset:

Provide labels for the data:

Scope  (24)

Data  (5)

Simple examples such as images and text are shown directly in the plot:

Plot features extracted from audio recordings:

Extract features on a mixed-type dataset:

Extract features from a dataset that contains missing values:

Extract features from a dataset formatted as a list of associations:

Tabular Data  (1)

Get tabular data:

Plot features coming from one of the columns:

Plot multiple features per row as points, with tooltips using elements from multiple columns:

Use LabelingFunctionCallout to use features as callouts for the points:

Wrappers  (9)

Use wrappers on individual examples:

Use wrappers on the entire collection of examples:

Wrappers can be nested:

Use the value of each point as a tooltip:

Label points with automatically positioned text:

Use callouts to label points:

Add tooltips to each point:

Use PopupWindow to provide additional drilldown information:

Button can be used to trigger any action:

Labeling  (5)

Simple examples such as images and text are shown directly in the plot:

Use the examples as tooltips:

Provide labels for the data:

Group all the labels together:

Association keys are used as labels:

Put the labels in tooltips:

Presentation  (4)

Use a gray background for the plot:

Represent the examples as stars in the plot:

Use large purple points:

Use a plot theme with a frame and grid lines:

Combine the detailed theme with a theme that uses open shapes for the points:

Options  (61)

AspectRatio  (4)

By default, FeatureSpacePlot uses the same width and height:

Specify the height to width ratio:

AspectRatioAutomatic determines the ratio from the plot ranges:

AspectRatioFull adjusts the height and width to tightly fit inside other constructs:

Axes  (3)

By default, Axes are not drawn for FeatureSpacePlot:

Use AxesTrue to turn on axes:

Turn each axis on individually:

AxesLabel  (3)

No axes labels are drawn by default:

Place a label on the axis:

Specify axes labels:

AxesOrigin  (2)

The position of the axes is determined automatically:

Specify an explicit origin for the axes:

AxesStyle  (4)

Change the style for the axes:

Specify the style of each axis:

Use different styles for the ticks and the axes:

Use different styles for the labels and the axes:

Background  (2)

By default, plots do not have a background:

Use a light gray background:

FeatureExtractor  (1)

By default, features are automatically chosen based on input type:

Use a different setting:

Use a random position as the feature:

Frame  (3)

FeatureSpacePlot does not use a frame by default:

Draw a frame on the left and right edges:

Draw a frame on the left and bottom edges:

FrameLabel  (4)

Place a label along the bottom frame of a plot:

Frame labels are placed on the bottom and left frame edges by default:

Place labels on each of the edges in the frame:

Use a customized style for both labels and frame tick labels:

FrameStyle  (2)

Specify the style of the frame:

Specify the style for each frame edge:

LabelingFunction  (5)

Simple examples such as images and text are shown directly in the plot:

Show the examples as points:

Show the examples as points with the original data in tooltips:

Center the labels at the corresponding points:

Use Callout to label the points automatically:

Specify the callout placements:

LabelingSize  (4)

Size of labels are determined automatically:

Specify the size of labels:

Specify the size of callout:

Limit the display size for text:

LabelingTarget  (7)

Labels are automatically placed to maximize readability:

Show all labels:

Use a denser layout for the labels:

Show the quarter of the labels that are easiest to read:

Only allow labels that are orthogonal to the points:

Only allow labels that are diagonal to the points:

Restrict labels to be above or to the right of the points:

Allow labels to obscure other points:

Allow labels to be clipped by the edges of the plot:

Method  (2)

FeatureSpacePlot uses Method->"UMAP" by default:

Use different methods:

PerformanceGoal  (1)

Generate a plot using flags for countries in Europe:

Use a faster method to position the flags:

PlotInteractivity  (3)

By default, plots may contain interactive elements such as tooltips:

Turn off all the interactive elements:

Interactive elements provided as part of the input are disabled:

PlotLabel  (1)

Add an overall label to the plot:

PlotMarkers  (1)

Change the appearance of the plot markers:

PlotRangePadding  (2)

Increase the padding around the contents of the plot:

Do not add any padding to the plot:

PlotStyle  (2)

Use red points to represent the examples:

Make the points large and red:

PlotTheme  (2)

By default, plots are shown with minimal extra detail:

Use a theme with a dark background and more styled points:

Show labels:

RandomSeeding  (3)

FeatureSpacePlot gives reproducible results:

Use an automatic seed to get different results:

Use specific seeds for reproducible but varying results:

Applications  (1)

Classify a spoken digit command dataset:

All recording labels:

Define a network structure:

Train the network:

Chop the last two levels of the network:

Plot audio features using the output of the chopped net as feature extractor:

Properties & Relations  (1)

FeatureSpacePlot is a combination of DimensionReduce and ListPlot:

See Also

FeatureSpacePlot3D  FeatureExtract  DimensionReduce  ListPlot  FeatureExtractor  FeatureExtraction  PointValuePlot

Related Guides

    ▪
  • Machine Learning
  • ▪
  • Data Visualization
  • ▪
  • Unsupervised Machine Learning
  • ▪
  • High-Dimensional Visualization
  • ▪
  • Signal Processing
  • ▪
  • Computer Vision
  • ▪
  • Image Computation for Microscopy
  • ▪
  • Speech Computation
  • ▪
  • Audio Processing
  • ▪
  • Audio Analysis
  • ▪
  • Video Processing
  • ▪
  • Video Analysis

History

Introduced in 2017 (11.1) | Updated in 2017 (11.2) ▪ 2018 (11.3) ▪ 2021 (13.0) ▪ 2025 (14.2) ▪ 2025 (14.3)

Wolfram Research (2017), FeatureSpacePlot, Wolfram Language function, https://reference.wolfram.com/language/ref/FeatureSpacePlot.html (updated 2025).

Text

Wolfram Research (2017), FeatureSpacePlot, Wolfram Language function, https://reference.wolfram.com/language/ref/FeatureSpacePlot.html (updated 2025).

CMS

Wolfram Language. 2017. "FeatureSpacePlot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/FeatureSpacePlot.html.

APA

Wolfram Language. (2017). FeatureSpacePlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FeatureSpacePlot.html

BibTeX

@misc{reference.wolfram_2025_featurespaceplot, author="Wolfram Research", title="{FeatureSpacePlot}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/FeatureSpacePlot.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_featurespaceplot, organization={Wolfram Research}, title={FeatureSpacePlot}, year={2025}, url={https://reference.wolfram.com/language/ref/FeatureSpacePlot.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English