Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. The Semantic Web – ISWC 2014
  3. Conference paper

Introducing Wikidata to the Linked Data Web

  • Conference paper
  • pp 50–65
  • Cite this conference paper
The Semantic Web – ISWC 2014 (ISWC 2014)
Introducing Wikidata to the Linked Data Web
  • Fredo Erxleben24,
  • Michael Günther24,
  • Markus Krötzsch24,
  • Julian Mendez24 &
  • …
  • Denny Vrandečić25 

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8796))

Included in the following conference series:

  • International Semantic Web Conference
  • 7219 Accesses

  • 248 Citations

  • 18 Altmetric

Abstract

Wikidata is the central data management platform of Wikipedia. By the efforts of thousands of volunteers, the project has produced a large, open knowledge base with many interesting applications. The data is highly interlinked and connected to many other datasets, but it is also very rich, complex, and not available in RDF. To address this issue, we introduce new RDF exports that connect Wikidata to the Linked Data Web. We explain the data model of Wikidata and discuss its encoding in RDF. Moreover, we introduce several partial exports that provide more selective or simplified views on the data. This includes a class hierarchy and several other types of ontological axioms that we extract from the site. All datasets we discuss here are freely available online and updated regularly.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

Technical Usability of Wikidata’s Linked Data

Chapter © 2019

An Analysis of Links in Wikidata

Chapter © 2022

Getting the Most Out of Wikidata: Semantic Technology Usage in Wikipedia’s Knowledge Graph

Chapter © 2018

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Data integration
  • Data publication and archiving
  • Gene ontology
  • Ontology
  • Information Model
  • Data and Information Visualization

References

  1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data: The story so far. Int. J. Semantic Web and Information Systems 5(3), 1–22 (2009)

    Article  Google Scholar 

  2. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia – A crystallization point for the Web of Data. J. Web Semantics 7(3), 154–165 (2009)

    Article  Google Scholar 

  3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: A collaboratively created graph database for structuring human knowledge. In: Proc. 2008 ACM SIGMOD Int. Conf. on Management of Data, pp. 1247–1250. ACM (2008)

    Google Scholar 

  4. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information from peer sources. J. Data Semantics 1, 153–184 (2003)

    Google Scholar 

  5. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL: Contextualizing ontologies. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Brickley, D., Guha, R. (eds.): RDF Schema 1.1. W3C Recommendation (February 25, 2014), http://www.w3.org/TR/rdf-schema/

  7. Carothers, G. (ed.): RDF 1.1 N-Quads: A line-based syntax for RDF datasets. W3C Recommendation (February 25, 2014), http://www.w3.org/TR/n-quads/

  8. Carroll, J.J., Bizer, C., Hayes, P.J., Stickler, P.: Named graphs. J. Web Semantics 3(4), 247–267 (2005)

    Article  Google Scholar 

  9. Cyganiak, R., Harth, A., Hogan, A.: N-Quads: Extending N-Triples with Context. Public Draft (2012), http://sw.deri.org/2008/07/n-quads/

  10. Guha, R.V., McCool, R., Fikes, R.: Contexts for the semantic web. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 32–46. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell., Special Issue on Artificial Intelligence, Wikipedia and Semi-Structured Resources 194, 28–61 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Krötzsch, M., Vrandečić, D., Völkel, M., Haller, H., Studer, R.: Semantic Wikipedia. J. Web Semantics 5(4), 251–261 (2007)

    Article  Google Scholar 

  13. Lebo, T., Sahoo, S., McGuinness, D. (eds.): PROV-O: The PROV Ontology. W3C Recommendation (April 30, 2013), http://www.w3.org/TR/prov-o

  14. Lenat, D., Guha, R.V.: Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project. Addison-Wesley (1990)

    Google Scholar 

  15. MacGregor, R.M.: Representing reified relations in Loom. J. Experimental and Theoretical Artificial Intelligence 5, 179–183 (1993)

    Article  Google Scholar 

  16. Nguyen, V., Bodenreider, O., Sheth, A.P.: Don’t like RDF reification?: making statements about statements using singleton property. In: WWW 2014, pp. 759–770 (2014)

    Google Scholar 

  17. Noy, N., Rector, A. (eds.): Defining N-ary Relations on the Semantic Web. W3C Working Group Note (April 12, 2006), http://www.w3.org/TR/swbp-n-aryRelations/

  18. OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview. W3C Recommendation (October 27, 2009), http://www.w3.org/TR/owl2-overview/

  19. Sintek, M., Decker, S.: TRIPLE – a query, inference, and transformation language for the Semantic Web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 364–378. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Voss, J.: Collaborative thesaurus tagging the Wikipedia way. CoRR abs/cs/0604036 (2006)

    Google Scholar 

  21. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledge base. Comm. ACM (to appear, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Technische Universität Dresden, Germany

    Fredo Erxleben, Michael Günther, Markus Krötzsch & Julian Mendez

  2. Google, San Francisco, USA

    Denny Vrandečić

Authors
  1. Fredo Erxleben
    View author publications

    Search author on:PubMed Google Scholar

  2. Michael Günther
    View author publications

    Search author on:PubMed Google Scholar

  3. Markus Krötzsch
    View author publications

    Search author on:PubMed Google Scholar

  4. Julian Mendez
    View author publications

    Search author on:PubMed Google Scholar

  5. Denny Vrandečić
    View author publications

    Search author on:PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Yahoo Labs, Diagonal 177, 08018, Barcelona, Spain

    Peter Mika

  2. Stanford University, 1265 Welch Road, 94305, Stanford, CA, USA

    Tania Tudorache

  3. University of Zurich, DDIS, Zurich, Switzerland

    Abraham Bernstein

  4. IBM Research, Yorktown Heights, NY, USA

    Chris Welty

  5. Information Sciences Institute and Department of Computer Science, University of Southern California, Los Angeles, CA, USA

    Craig Knoblock

  6. Google, USA

    Denny Vrandečić  & Natasha Noy  & 

  7. VU University Amsterdam, The Netherlands

    Paul Groth

  8. University of California, Santa Barbara, CA, USA

    Krzysztof Janowicz

  9. School of Computer Science, The University of Manchester, Manchester, UK

    Carole Goble

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D. (2014). Introducing Wikidata to the Linked Data Web. In: Mika, P., et al. The Semantic Web – ISWC 2014. ISWC 2014. Lecture Notes in Computer Science, vol 8796. Springer, Cham. https://doi.org/10.1007/978-3-319-11964-9_4

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-11964-9_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11963-2

  • Online ISBN: 978-3-319-11964-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Link Data
  • Class Hierarchy
  • Query Answering
  • External Dataset
  • Site Link

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

3.141.15.154

Not affiliated

Springer Nature

© 2025 Springer Nature