Skip to main content

Silicon in Soils and Plants

  • Chapter
Silicon and Plant Diseases

Abstract

The crust of the earth is largely composed of silicon that is found primarily as silicate minerals, secondary alumino silicates and various forms of silicon dioxide. However, the abundance of silicon in soils is not an indication that sufficient supplies of soluble silicon are available for plant uptake. In this chapter, the outcomes of many years of research conducted on silicon are consolidated to understand the state of knowledge for silicon fertilization guidelines in crop production. Monosilicic acid (H4SiO4) is the form of silicon used by plants, which is found both in liquid and adsorbed phases of silicon in soils. The concentration of the H4SiO4 in the soil solution is influenced by the soil pH and the amounts of clay, minerals, organic matter and Fe/Al oxides/hydroxides, which are collectively related to the geologic age of the soil. Fertilization can rapidly increase the concentration of H4SiO4 in the soil solution; therefore, fertilization has become a common practice in areas with intensive cropping systems, particularly for those soils that are inherently low in soluble silicon. The establishment of procedures to estimate the plant-available silicon and the critical soil silicon levels and the method (5-day Na2CO3-NH4NO3 extraction) to analyze the soluble silicon fraction in solid fertilizers were among the advances in research on silicon in agriculture in recent years. These measurements were the key components required for the development and implementation of effective silicon fertilizer management in crop production. However, many aspects of the role of silicon in soil science remain understudied, and these aspects should be the focus of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 139.00
Price excludes VAT (USA)
Softcover Book
USD 179.99
Price excludes VAT (USA)
Hardcover Book
USD 179.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abed-Ashtiani F, Kadir J, Selamat A et al (2012) Effect of foliar and root application of silicon against rice blast fungus in MR219 rice variety. Plant Pathol J 28:164–171

    Article  CAS  Google Scholar 

  • Acquaye D, Tinsley J (1964) Soluble silica in soils. In: Hallsworth EG, Crawford DV (eds), Experimental pedology. In: Proceedings of the eleventh Easter School in Agricultural Science, University of Nottingham, 1964, Butterworths, London, pp 126–148

    Google Scholar 

  • Adatia MH, Besford RT (1986) The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann Bot 58:343–351

    CAS  Google Scholar 

  • Al-Aghabary K, Zhu Z, Shi QH (2004) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115

    Article  CAS  Google Scholar 

  • Allen BL, Hajek BF (1989) Mineral occurrence in soil environments. In: Minerals in soil environments. Soil Science Society of America, Madison, pp 199–279

    Google Scholar 

  • Allmaras RR, Laird DA, Douglas CL et al (1991) Long-term tillage, residue management and nitrogen fertilizer influences on soluble silica in Haploxerol. Am Soc Agron, Madison, p 323

    Google Scholar 

  • Anderson DL, Bowen JE (1990) Sugarcane nutrition. Potash & Phosphate Institute, Atlanta, p 31

    Google Scholar 

  • Aoki Y, Hoshino M, Matsubara T (2007) Silica and testate amoebae in a soil under pine-oak forest. Geoderma 142:29–35

    Article  CAS  Google Scholar 

  • Arnseth RW, Turner RS (1988) Sequential extraction of iron, manganese, aluminium and silicon in soil from two contrasting water sheds. Soil Sci Soc Am J 52:1801–1807

    Article  CAS  Google Scholar 

  • Ayres AS (1966) Calcium silicate slag as a growth stimulant for sugarcane on low-silicon soils. Soil Sci 101:216–227

    Article  CAS  Google Scholar 

  • Babu T, Datnoff LE, Yzenas J et al (2013) Silicon status of Louisiana soils grown to different field crops. ASA-CSSA-SSSA international annual meetings, Tampa, pp 3–6, Nov 2013

    Google Scholar 

  • Barbosa-Filho MP, Snyder GH, Elliott C et al (2001) Evaluation of soil test procedures for determining rice-available silicon. Commun Soil Sci Plant Anal 32:1779–1792

    Article  CAS  Google Scholar 

  • Basile-Doelsch I, Meunier JD, Parron C (2005) Another continental pool in the terrestrial silicon cycle. Nature 433:399–402

    Article  CAS  PubMed  Google Scholar 

  • Baylis AD, Gragopoulou C, Davidson KJ et al (1994) Effects of silicon on the toxicity of aluminum to soybean. Commun Soil Sci Plant Anal 25:537–546

    Article  CAS  Google Scholar 

  • Bazilevich NI (1993) The biological productivity of North Eurasian ecosystems. RAS Institute of Geography, Moscow, p 293

    Google Scholar 

  • Beckwith RS, Reeve R (1963) Studies on soluble silica in soils. I. The sorption of silicic acid by soils and minerals. Aust J Soil Res 1:157–168

    Article  CAS  Google Scholar 

  • Beckwith RS, Reeve R (1964) Studies on soluble silica in soils. II. The release of monosilicic acid from soils. Aust J Soil Res 2:33–45

    Article  CAS  Google Scholar 

  • Bélanger RR, Bowen PA, Ehret DL et al (1995) Soluble silicon its role in crop disease management of greenhouse crops. Plant Dis 79:329–336

    Article  Google Scholar 

  • Bélanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f.sp. tritici). Phytopathology 93:402–412

    Article  PubMed  Google Scholar 

  • Bell PF, Simmons TF (1997) Silicon concentrations of biological standards. Soil Sci Soc Am J 61:321–322

    Article  CAS  Google Scholar 

  • Berthelsen S, Noble AD, Garside AL (2001) Silicon research down under: past, present and future. In: Snyder GH, Korndörfer GH, Datnoff LE (eds) Silicon deposition in higher plants. Silicon in agriculture. Elsevier, New York, pp 241–255

    Chapter  Google Scholar 

  • Berthelsen S, Noble AD, Kingston G et al (2003) Improving yield and ccs in sugarcane through the application of silicon based amendments. Final report – SRDC project CLW009. Sugar Research and Development Corporation. CSIRO Land and Water PMBAitkenvale, Townsville, p 54

    Google Scholar 

  • Bharwana SA, Ali S, Farooq MA et al (2013) Alleviation of lead toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. J Bioremed Biodeg 4:187. doi:10.4172/2155-6199.1000187

    Google Scholar 

  • Biermans V, Baert L (1977) Selective extraction of the amorphous Al, Fe and Si oxides using an alkaline Tiron solution. Clay Miner 12:127–135

    Article  CAS  Google Scholar 

  • Blecker SW, McCulley RL, Chadwick OA et al (2006) Biological cycling of silica across a grassland bioclimosequence. Glob Biogeochem Cycles 20:1–11

    Article  CAS  Google Scholar 

  • Bocharnikova EA, Matichenkov VV, Pinsky DL (1995) The influence of soluble silica acids on behavior of heavy metals in soil and natural waters. In: Proceedings of the world-wide symposium pollution in large cities, Venece/Padova, p 43

    Google Scholar 

  • Bouzoubaa Z (1991) Etude de rôles de la silice dans les mécanimes de tolérance à la sécheresse chez quelques espèces de grande culture. PhD thesis, Montpellier II University

    Google Scholar 

  • Breuer J (1994) Hartsetzende Bö den Nordkameruns. PhD thesis, Soil Science Department, Technical University of Munich, Weihenstephan, p 189

    Google Scholar 

  • Breuer J, Herrmann L (1999) Eignung der Extraktion mit Natriumbikarbonat für die Charakterisierung von bodenbildendenProzessen. Mittlg Dtsch Bodenk Ges 91:1375–1378

    Google Scholar 

  • Brown TH, Mahler RL (1987) Effects of phosphorus and acidity on levels of silica extracted from a Palouse silt loam. Soil Sci Soc Am J 51:674–677

    Article  CAS  Google Scholar 

  • Brown TH, Mahler RL (1988) Relationships between soluble silica and plow pans in Palouse silt loam soils. Soil Sci 145:317–393

    Article  Google Scholar 

  • Buck GB, Korndörfer GH, Datnoff LE (2011) Extractors for estimating plant available silicon from potential silicon fertilizer sources. J Plant Nutr 34:272–282

    Article  CAS  Google Scholar 

  • Casey WH, Kinrade SD, Knight CT et al (2003) Aqueous silicate complexes in wheat, Triticum aestivum L. Plant Cell Environ 27:51–54

    Article  Google Scholar 

  • Chadwick OA, Hendricks DM, Nettleton WD (1987) Silica in duric soils, 2. Mineralogy. Soil Sci Soc Am J 51:982–985

    Article  CAS  Google Scholar 

  • Chan KY, van Zwieten BL, Meszaros I et al (2007) Agronomic values of green waste biochars as a soil amendments. Aust J Soil Res 45:437–444

    Google Scholar 

  • Chen HM, Zheng CR, Tu C et al (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234

    Article  CAS  PubMed  Google Scholar 

  • Cheong WY, Halais P (1970) Needs of sugarcane for silicon when growing in highly weathered latosols. Exp Agric 6:99–106

    Article  CAS  Google Scholar 

  • Cocker KM, Evans DE, Hodson MJ (1998) The amelioration of aluminum toxicity by silicon in higher plants: solution chemistry or an in planta mechanism? Physiol Plant 104:608–614

    Article  CAS  Google Scholar 

  • Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles 16:1121

    Article  CAS  Google Scholar 

  • Conley DJ, Sommer M, Meunier JD et al (2006) Silicon in the terrestrial biogeosphere. In: Ittekot V, Humborg C, Garnier J (eds) Land–ocean nutrient fluxes: silica cycle. SCOPE Series 66:13–28

    Google Scholar 

  • Cornelis JT, Titeux H, Ranger J et al (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurence and uses. VCH, Weinheim/New York

    Google Scholar 

  • Cotterill JV, Watkins RW, Brennon CB et al (2007) Boosting silica levels in wheat leaves reduces grazing by rabbits. Pest Manag Sci 63:247–253

    Article  CAS  PubMed  Google Scholar 

  • Da Cunha KPV, Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Pollut 197:323–330

    Article  CAS  Google Scholar 

  • Datnoff LE, Snyder GH, Deren CW (1992) Influence of silicon fertilizer grades on blast and brown spot development and yields of rice. Plant Dis 76:1011–1013

    Article  CAS  Google Scholar 

  • Datnoff LE, Deren CW, Snyder GH (1997) Silicon fertilization for disease management of rice in Florida. Crop Prot 16:525–531

    Article  CAS  Google Scholar 

  • Datnoff LE, Snyder GH, Korndörfer GH (2001) Silicon in agriculture. Elsevier, Dordrecht

    Google Scholar 

  • De Datta SK (1981) Principles and practices of rice production. Wiley, New York, p 357

    Google Scholar 

  • De Lima Rodrigues L, Daroub SH, Rice WR et al (2003) Comparison of three soil test methods for estimating plant-available silicon. Commun Soil Sci Plant Anal 34:2059–2071

    Article  CAS  Google Scholar 

  • De Saussure NT (1804) Recherches chimiques sur la végétation. Chez la veuve Nyon Ed., Gauthiers-Villars, Paris, p 112

    Google Scholar 

  • Delstanche S, Opfergelt S, Cardinal D et al (2009) Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide. Geochim Cosmochim Acta 73:923–934

    Article  CAS  Google Scholar 

  • Deren CW, Datnoff LE, Snyder GH (1992) Variable silicon content of rice cultivars grown on Everglades Histosols. J Plant Nutr 15:2363–2368

    Article  Google Scholar 

  • Desplanques V, Cary L, Mouret JC et al (2006) Silicon transfers in a rice field in Camargue (France). J Geochem Explor 88:190–193

    Article  CAS  Google Scholar 

  • Dietrich D, Hinke S, Baumann W et al (2003) Silica accumulation in Triticum aestivum L. and Dactylis glomerata L. Anal Bioanal Chem 376:399–404

    CAS  PubMed  Google Scholar 

  • Dietzel M (2000) Dissolution of silicates and the stability of polysilicic acid. Geochim Cosmochim Acta 64:3275–3281

    Article  CAS  Google Scholar 

  • Dietzel M (2002) Interaction of polysilicic and monosilicic acid with mineral surfaces. In: Stober I, Bucher K (eds) Water–rock interaction. Kluwer, Dordrecht, pp 207–235

    Chapter  Google Scholar 

  • Dobermann A, Fairhurst TH (2000) Rice: nutrient disorders and nutrient management. Potash and Phosphate Inst., Singapore and IRRI, Manila

    Google Scholar 

  • Doucet FJ, Schneider C, Bones SJ et al (2001) The formation of hydroxyalumino silicates of geochemical and biological significance. Geochim Cosmochim Acta 65:2461–2467

    Article  CAS  Google Scholar 

  • Dove PM (1995) Kinetic and thermodynamic controls on silica reactivity in weathering environments. In: Chemical weathering rates of silicate minerals. Mineralogical Society of America and the Geochemical Society, Rev. Mineral Geochem 31:235–290

    CAS  Google Scholar 

  • Dove PM, Han N, Wallace AF et al (2008) Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs. Proc Natl Acad Sci U S A 105:9903–9908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drees LR, Wilding LP, Smeck NE et al (1989) Silica in soils: quartz and disorders polymorphs. In: Minerals in soil environments. Soil Science Society of America, Madison, pp 914–974

    Google Scholar 

  • Elawad SH, Green VE (1979) Silicon and the rice plant environment: a review of recent research. Riso 28:235–253

    CAS  Google Scholar 

  • Elliot CL, Snyder GH (1991) Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem 39:1118–1119

    Article  Google Scholar 

  • Eneji AE, Inanaga S, Muranaka S et al (2005) Effect of calcium silicate on growth and dry matter yield of Chloris gayana and Sorghum sudanense under two soil water regimes. Grass Forage Sci 60:393–398

    Article  CAS  Google Scholar 

  • Eneji AE, Inanaga S, Muranaka S et al (2008) Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizer. J Plant Nutr 31:355–365

    Article  CAS  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (2001) Silicon in plants: facts vs. concepts. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 1–15

    Chapter  Google Scholar 

  • Epstein E, Bloom A (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Sunderland, p 380

    Google Scholar 

  • Exley C (1998) Silicon in life: a bioinorganic solution to bioorganic essentiality. J Inorg Biochem 69:139–144

    Article  CAS  Google Scholar 

  • Farmer V, Delbos E, Miller JD (2005) The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127:71–79

    Article  CAS  Google Scholar 

  • Fawe A, Menzies JG, Chérif M et al (2001) Silicon and disease resistance in dicotyledons. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 159–170

    Chapter  Google Scholar 

  • Feng X, Wu S, Wharmby A et al (1999) Microwave digestion of plant and grain standard reference materials in nitric and hydrofluoric acids for multi-elemental determination by inductively coupled plasma mass spectrometry. J Anal At Spectrom 14:939–946

    Article  CAS  Google Scholar 

  • Fernandes ML, Macias F (1987) Variacion estansional de la composicion de la disolucion de suelos de Galicia en relacion con el tipo de horizonte y material original. An Edafol Y Agrobiol 46:53–65

    Google Scholar 

  • Follett EAC, McHardy WJ, Mitchell BD (1965) Chemical dissolution techniques in the study of soil clays: Part I. Clay Miner 6:23–34

    Article  CAS  Google Scholar 

  • Foster MD (1953) The determination of free silica and free alumina in montmorillonites. Geochim Cosmochim Acta 3:143–154

    Article  CAS  Google Scholar 

  • Fox RL, Silva JA, Younge OR et al (1967) Soil and plant silicon and silicate response by sugarcane. Soil Sci Soc Am Proc 31:775–779

    Article  CAS  Google Scholar 

  • Fox RL, Silva JA, Plucknett DL et al (1969) Soluble and total silicon in sugarcane. Plant Soil 30:81–91

    Article  CAS  Google Scholar 

  • Foy CD (1992) Soil chemical factors limiting plant root growth. Adv Soil Sci 19:97–149

    Article  CAS  Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J et al (2006) Surface properties, solubility and dissolution kinetics of bamboo Phytoliths. Geochim Cosmochim Acta 70:1939–1951

    Article  CAS  Google Scholar 

  • Fraysse F, Pokrovsky OS, Meunier JD (2010) Experimental study of terrestrial plant litter interaction with aqueous solutions. Geochim Cosmochim Acta 74:70–84

    Article  CAS  Google Scholar 

  • Gascho GJ (2001) Silicon sources for agriculture. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture, Vol 8, Studies in plant science. Elsevier, pp 197–207. doi:10.1016/s0928-3420(01)80016-1

    Google Scholar 

  • Gascho GJ, Korndörfer GH (1998) Availability of silicon from several sources determined by chemical and biological methods. In: Soil Science Society of America annual meeting, Baltimore, p 308, 18–22 Oct

    Google Scholar 

  • Gladkova KF (1982) The role of silicon in phosphate plant nutrition. Agrochemistry 2:133

    Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Gomes FB, Moraces JC, Santos CD et al (2005) Resistance induction in wheat plants by silicon and aphids. Sci Agric 62:547–551

    Article  CAS  Google Scholar 

  • Gong HJ, Zhu XY, Chen KM et al (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Goussain MM, Prado E, Moraes JC (2005) Effect of silicon applied to wheat plants on the biology and probing behavior of the greenbug Schizaphis graminum (Rond.) (Hemiptera: Aphididae). Neotrop Entomol 34:807–813

    Article  CAS  Google Scholar 

  • Gu H, Qui H, Tian T et al (2011) Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere 83:1234–1240

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Inal A, Bagci EG (2007) Silicon-mediated changes on some physiological and enzymatic parameters symptomatic of oxidative stress in barley grown in sodic-B toxic soil. J Plant Physiol 164:807–811

    Article  CAS  PubMed  Google Scholar 

  • Guntzer F, Keller G, Meunier J (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213

    Article  Google Scholar 

  • Guo W, Hou YL, Wang SG (2005) Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture. Plant Soil 272:173–181

    Article  CAS  Google Scholar 

  • Haak E, Siman G (1992) Field experiments with Oyeslag (Faltorsok med Oyeslag). Report 185, Uppsala

    Google Scholar 

  • Halais P (1967) Si, Ca, Mn contents of cane leaf sheaths, a reflexion of pedogensis. In: 1966 Report of the Mauritius Sugarcane Industry Research Institute, Mauritius, pp 83–85

    Google Scholar 

  • Hallmark CT, Wilding LP, Smeck NE (1982) Silicon. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2, 2nd edn, Agronomy series No 9. American Society of Agronomy, Madison, pp 263–273

    Google Scholar 

  • Hammond KE, Evans DE, Hodson MJ (1995) Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil 173:89–95

    Article  CAS  Google Scholar 

  • Hansen HCB, Raben-Lange B, Raulund-Rasmussen K et al (1994) Monosilicate adsorption by ferrihydrite andgoethite at pH 3–6. Soil Sci 158:40–46

    Article  CAS  Google Scholar 

  • Hashimoto J, Jackson ML (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration. In: Proceedings of the 7th national conference on clays and clay minerals, Washington, DC, pp 102–113

    Google Scholar 

  • Hattori T, Inanaga S, Tanimoto E et al (2003) Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44:743–749

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Inanaga S, Araki H et al (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant 123:459–466

    Article  CAS  Google Scholar 

  • Haynes RJ, Belyaeva ON, Kingston G (2013) Evaluation of industrial wastes as sources of fertilizer silicon using chemical extractions and plant uptake. J Plant Nutr Soil Sci 176:238–248

    Article  CAS  Google Scholar 

  • Haysom MBC, Chapman LS (1975) Some aspects of the calcium silicate trials at Mackay. Proc Aust Sugar Cane Technol 42:117–122

    CAS  Google Scholar 

  • Haysom MB, Ostatek-Boczynski ZA (2006) Rapid wet oxidation procedure for the estimation of silicon in plant tissue. Commun Soil Sci Plant Anal 37:2299–2306

    Article  CAS  Google Scholar 

  • He DY (1980) Silicon in soils and plants. Proc Soil Sci 5:1–10

    Google Scholar 

  • Heckman JR, Johnston S, Cowgill W (2003) Pumpkin yield and disease response to amending soil with silicon. HortScience 38:552–554

    CAS  Google Scholar 

  • Henriet C, Draye X, Oppitz I et al (2006) Effects of distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant Soil 287:359–374

    Article  CAS  Google Scholar 

  • Herbauts J, Dehalu FA, Gruber W (1994) Quantitative determination of plant opal content in soils using a combined method of heavy liquid separation and alkali dissolution. Eur J Soil Sci 45:379–385

    Article  CAS  Google Scholar 

  • Hiemstra T, Barnett MO, van Riemsdijk WH (2007) Interaction of silicic acid with goethite. J Colloid Interf Sci 310:8–17

    Article  CAS  Google Scholar 

  • Hodson MJ, Sangster AG (1988) Observations on the distribution of mineral elements in the leaf of wheat (Triticum aestivum L.) with particular reference to silicon. Ann Bot 62:463–471

    Google Scholar 

  • Hodson MJ, White PJ, Mead A (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horst WJ, Fecht M, Naumann A et al (1999) Physiology of manganese toxicity and tolerance in Vigna unguiculata (L) Walp. Z Pflanzenernahr Bodenkd 162:263–274

    Article  CAS  Google Scholar 

  • Hossain KA, Horiuchi T, Miyagawa S (2001) Effects of silicate materials on growth and grain yield of rice plants grown in clay loam and sandy loam soils. J Plant Nutr 24:1–13

    Article  CAS  Google Scholar 

  • Houben D, Sonnet P, Cornelis J (2014) Biochar from Miscanthus: a potential silicon fertilizer. Plant Soil 374:871–882

    Article  CAS  Google Scholar 

  • Huang PM (1991) Ionic factors affecting the formation of short-rangeordered aluminosilicates. Soil Sci Soc Am J 55:1172–1180

    Article  CAS  Google Scholar 

  • Hunt JW, Dean AP, Webster RE (2008) A novel mechanism by which silica defends grasses against herbivore. Ann Bot 102:653–656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hurney AP (1973) A progress report on the calcium silicate investigations. Proc Aust Sugar Cane Technol 40:109–113

    CAS  Google Scholar 

  • Iler RK (1955) The colloid chemistry of silica and silicates. Cornell University Press, Ithaca

    Google Scholar 

  • Iler RK (1979) The chemistry of silica. Wiley, New York, p 621

    Google Scholar 

  • Imaizumi K, Yoshida S (1958) Edaphological studies on silicon supplying power of paddy soils. Bull Natl Inst Agric Sci B 8:261–304

    Google Scholar 

  • Inal A, Pilbeam DJ, Gunes A (2009) Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. J Plant Nutr 32:112–128

    Article  CAS  Google Scholar 

  • Iwasaki K, Maier P, Fecht M et al (2002a) Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil 238:281–288

    Article  CAS  Google Scholar 

  • Iwasaki K, Maier P, Fecht M et al (2002b) Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). J Plant Physiol 159:167–173

    Article  CAS  Google Scholar 

  • Janislampi KW (2012) Effect of silicon on plant growth and drought stress tolerance. All graduate theses and dissertations. Paper 1360. http://digitalcommons.usu.edu/etd/1360

  • Jones RL (1969) Determination of opal in soil by alkali dissolution analysis. Soil Sci Soc Am Proc 33:976–978

    Article  CAS  Google Scholar 

  • Jones LHP, Handreck KA (1963) Effects of iron and aluminumoxides on silica in solution in soils. Nature 198:852–853

    Article  CAS  Google Scholar 

  • Jones LHP, Handreck KA (1965) Studies of silica in the oat plant. III. Uptake of silica from soils by plant. Plant Soil 23:79–96

    Article  CAS  Google Scholar 

  • Jones LHP, Handreck KA (1967) Silica in soils, plants, and animals. Adv Agron 19:107–149

    Article  CAS  Google Scholar 

  • Kalapathy U, Proctor A, Shultz J (2002) An improved method for production of silica from rice hull ass. Bioresour Technol 85:285–289

    Article  CAS  PubMed  Google Scholar 

  • Kamenidou S, Cavins TJ, Marek S (2010) Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Sci Hortic 123:390–394

    Article  CAS  Google Scholar 

  • Kanto T, Miyoshi A, Ogawa T et al (2006) Suppressive effect of liquid potassium silicate on powdery mildew of strawberry in soil. J Gen Plant Pathol 72:137–142

    Article  CAS  Google Scholar 

  • Karathanasis AD (1989) Solution chemistry of Fragipans-thermodynamic approach to understanding Fragipan formation. In: Fragipans: their occurrence, classification, and genesis. SSSA Spec Publ 24:113–139

    Google Scholar 

  • Karathanasis AD (2002) Mineral equilibria in environmental soil systems. In: Soil mineralogy with environmental applications. Soil Science Society of America, Madison, pp 109–151

    Google Scholar 

  • Kawaguchi K (1966) Tropical paddy soils. Jpn Agric Res Q 1:7–11

    Google Scholar 

  • Kaya C, Tuna AL, Sonmez O et al (2009) Mitigation effects of silicon on maize plants grown at high zinc. J Plant Nutr 32:1788–1798

    Article  CAS  Google Scholar 

  • Keller WD (1955) The principle of chemical weathering. Columbia Mo, Lucas Bros, p 111

    Google Scholar 

  • Khalid RA, Silva JA, Fox RL (1978) Residual effects of calcium silicate in tropical soils: II. Biological extraction of residual soil silicon. Soil Sci Soc Am J 42:94–97

    Article  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C (2001) The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    Article  CAS  PubMed  Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32

    Article  CAS  Google Scholar 

  • Knight CTG, Kinrade SD (2001) A primer on the aqueous chemistry of silicon. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 57–84

    Chapter  Google Scholar 

  • Kodama H, Ross GJ (1991) Tiron dissolution method used to remove and characterize inorganic components in soils. Soil Sci Soc Am J 55:1180–1187

    Article  CAS  Google Scholar 

  • Komisarov ID, Panfilova LA (1987) The method for production of slowly soluble fertilizer. USSR patent 1353767, Patent pending 15 May 84. Published in Bull. Inventions, no 4

    Google Scholar 

  • Korndörfer GH, Coelho MN, Snyder GH et al (1999) Avaliação de métodos de extração de silício para solos cultivados com arroz de sequeiro. Rev Bras Ci Solo 23:101–106

    Article  Google Scholar 

  • Korndörfer GH, Snyder GH, Ulloa M et al (2001) Calibration of soil and plant silicon analysis for rice production. J Plant Nutr 24:1071–1084

    Article  Google Scholar 

  • Kovda VA (1985) Biogeochemistry of soil cover. Nauka Publication, Moscow, pp 159–179

    Google Scholar 

  • Kraska B, Breitenbeck G (2010) Simple, robust method for quantifying silicon in plant tissue. Comm Soil Sci Plant Anal 41:2075–2085

    Article  CAS  Google Scholar 

  • Krausse GL, Schelske CL, Davis CO (1983) Comparison of three wet-alkaline methods of digestion of biogenic silica in water. Freshwater Biol 13:73–81

    Article  CAS  Google Scholar 

  • Kurtz AC, Derry LA, Chadwick OA (1987) Accretion of Asiandust to Hawaiian soils: isotopic, elemental and mineral mass balances. Geochim Cosmochim Acta 65:1971–1983

    Article  Google Scholar 

  • Lanning FC (1963) Nature and distribution of silica in strawberry plants. Proc Am Soc Hort Sci 76:349–358

    Google Scholar 

  • Li Q, Ma C, Shang Q (2007) Effects of silicon on photosynthesis and antioxidant enzymes of maize under drought stress. Yingyong Shengtai Xuebao 18:531–536

    CAS  PubMed  Google Scholar 

  • Lian S (1976) Silica fertilization of rice. In: The fertility of paddy soils and fertilizer application for rice. Food and Fertilizer Technology Center, Taipei, pp 197–221

    Google Scholar 

  • Liang YC (1999) Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224

    Article  CAS  Google Scholar 

  • Liang TC, Ding RX (2002) Influence of silicon on microdistribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants. Sci China Ser C 45:298–308

    Article  CAS  Google Scholar 

  • Liang YC, Ma TS, Li FJ et al (1994) Silicon availability and response of rice and wheat to silicon in calcareous soils. Commun Soil Sci Plant Anal 25:2285–2297

    Article  CAS  Google Scholar 

  • Liang YC, Shen QR, Shen ZG et al (1996) Effects of silicon on salinity tolerance of two barley cultivars. J Plant Nutr 19:173–183

    Article  CAS  Google Scholar 

  • Liang YC, Chen Q, Liu Q et al (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Wong JW, Wei L (2005a) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58:475–483

    Article  CAS  PubMed  Google Scholar 

  • Liang YC, Zhang WH, Chen Q et al (2005b) Effects of silicon on tonoplast H+−ATPase and H+-PPase activity, fatty acid composition and fluidity in roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53:29–37

    Article  CAS  Google Scholar 

  • Liang YC, Hua H, Zhu Y et al (2006a) Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytol 172:63–72

    Article  CAS  PubMed  Google Scholar 

  • Liang YC, Zhang WH, Chen Q et al (2006b) Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 57:212–219

    Article  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu Y et al (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Poll 147:422–428

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley Interscience, NewYork

    Google Scholar 

  • Liu Q, Zheng SJ, Lin XY (2004) Plant physiological and molecular biological mechanisms in response to aluminum toxicity. Chin J Appl Ecol 15:1641–1649

    CAS  Google Scholar 

  • Lux A, Luxová M, Hattori T et al (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 115:87–92

    Article  CAS  PubMed  Google Scholar 

  • Lux A, Luxova M, Abe J et al (2003a) Silicificationof bamboo (Phyllostachys heterocycla mitf.) root and leaf. Plant Soil 255:85–91

    Article  CAS  Google Scholar 

  • Lux A, Luxova M, Abe J et al (2003b) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol 158:437–441

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer and plant silicon research in Japan. Elsevier, Dordrecht

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Goto S, Tamai K et al (2001a) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma JF, Miyake Y, Takahashi E (2001b) Silicon as a beneficial element for crop plants. In: Snyder GH, Korndörfer GH, Datnoff LE (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 17–39

    Chapter  Google Scholar 

  • Ma JF, Mitani N, Nagao S et al (2004) Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol 136:3284–3289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma JF, Nishimura K, Takahashi E (1989) Effect of silicon on the growth of rice plant at different growth stages. Soil Sci Plant Nutr 35:347-356

    Google Scholar 

  • Ma JF, Tamai K, Yamaji N et al (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N et al (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  PubMed  Google Scholar 

  • Makabe S, Kakuda K, Sasaki Y et al (2009) Relationship between mineral composition or soil texture and available silicon in alluvial paddy soils on the Shounai Plain, Japan. Soil Sci Plant Nutr 55:300–308

    Article  CAS  Google Scholar 

  • Matichencov VV, Bocharnikova EA (2001) The relationship between silicon and soil physical and chemical properties. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 209–219

    Google Scholar 

  • Matichenkov VV, Ammosova YM (1994) Effects of amorphous silica on some properties of Sody-Podzolic soils. Soil Sci 7:52–61

    Google Scholar 

  • Matichenkov VV, Ammosova YM (1996) Effect of amorphous silica on soil properties of asod-podzolic soil. Eurasian Soil Sci 28:87–99

    Google Scholar 

  • Matoh T, Kairusmee P, Takahashi E (1986) Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci Plant Nutr 32:295–304

    Article  CAS  Google Scholar 

  • Maxim LD, Niebo R, LaRosa S et al (2008) Product stewardship in wollastonite production. Inhal Toxicol 20:1199–1214

    Article  CAS  PubMed  Google Scholar 

  • McCray JM, Mylavarapu R (2010) Sugarcane nutrient management using leaf analysis. Florida Cooperative Extension Service Fact Sheet SS-AGR-335. UF/IFAS Electronic Data Information Source (EDIS) Database. University of Florida, Gainesville. http://edis.ifas.ufl.edu/ag345. Accessed 19 July 2014

  • McCray JM, Rice RW, Baucum LE (2011) Calcium silicate recommendations for sugarcane on Florida organic soils. Florida Cooperative Extension Service Fact Sheet SS-AGR-350.UF/IFAS Electronic Data Information Source (EDIS) Database. University of Florida, Gainesville. http://edis.ifas.ufl.edu. Accessed 19 July 2014

  • McKeague JA, Cline MG (1963) Silica in soil solutions. I. The form and concentration of dissolved silica in aqueous extracts of some soils. Can J Soil Sci 43:70–82

    Article  CAS  Google Scholar 

  • McKeyes E, Sethi A, Young RN (1974) Amorphous coatings on particles of sensitive clay soils. Clay Miner 22:427–433

    Article  Google Scholar 

  • Mehra OP, Jackson ML (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered by sodium bicarbonate. Nat Conf Clays Clay Minerals 7:317–327

    Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer, Dordrecht, p 849

    Book  Google Scholar 

  • Menzies J, Bowen P, Ehret D et al (1992) Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. J Am Soc Hortic Sci 117:902–905

    CAS  Google Scholar 

  • Meunier JD (2003) Le role des plantes dans le transfert du silicium a la surface des continents. CR Geosci 335:1199–1206

    Article  CAS  Google Scholar 

  • Meunier JD, Guntzer F, Kirman S et al (2008) Terrestrial plant-Si and environmental changes. Mineral Mag 72:263–267

    Article  CAS  Google Scholar 

  • Meyer JH, Keeping MG (2001) Past, present and future research of the role of silicon for sugar cane in southern Africa. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 257–275

    Chapter  Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Monger HC, Kelly EF (2002) Silica minerals. In: Soil Mineralogy with environmental applications. Soil Science Society of America, Madison, pp 611–636

    Google Scholar 

  • Motomura K, Fuji T, Suzuki M (2004) Silica deposition in relation to ageing of leaf tissues in Sasa veitchii (Carriére) Rehder (Poacceae: Bambusoideae). Ann Bot 93:235–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Myhr K, Erstad K (1996) Converter slag a liming material on organic soils. Nor J Agric Sci 10:81

    Google Scholar 

  • Nair PK, Aiyer RS (1968) Study of available silicon in rice soils of Keralastate (India). II. Silicon uptake by different varieties of rice in relation to available silicon contributed by soil and irrigation water. Agric Res J Kerala 6:88–99

    Google Scholar 

  • Narayanaswamy C, Prakash NB (2009) Calibration and categorization of plant available silicon in rice soils of South India. J Plant Nutr 32:1237–1254

    Article  CAS  Google Scholar 

  • Neumann D, zur Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692

    Article  CAS  PubMed  Google Scholar 

  • Nonaka K, Takahashi K (1988) A method of measuring available silicates in paddy soils. Jpn Agric Res Q 22:91–95

    CAS  Google Scholar 

  • Nonaka K, Takahashi K (1990) A method of assessing the need of silicate fertilizers in paddy soils. XIV Int Congr Soil Sci, Kyoto, Japan 4:513–514

    Google Scholar 

  • Norton LD (1984) Micromorphology of silica cementation in soils. In: Ringrose-Voase AJ, Humphreys GS (eds) Soil micromorphology: studies in management and genesis. De Soil Sci 22:811–824

    Google Scholar 

  • Novozamsky I, van Eck R, Houba VJG (1984) A rapid determination of silicon in plant material. Commun Soil Sci Plant Anal 15:205–211

    Article  CAS  Google Scholar 

  • Nowakowski W, Nowakowska J (1997) Silicon and copper interaction in the growth of spring wheat seedlings. Biol Plant 39:463–465

    Article  CAS  Google Scholar 

  • Nwugol CC, Huerta AJ (2008) Silicon-induced cadmium resistance in rice (Oryza sativa). J Plant Nutr Soil Sci 171:841–848

    Article  Google Scholar 

  • O’Reilly SE, Sims JT (1995) Phosphorus adsorption and desorption in a sandy soil amended with high rates of coal fly ash. Commun Soil Sci Plant Anal 26:2983

    Article  Google Scholar 

  • Opfergelt S, Bournonville G, Cardinal D et al (2009) Impact of soil weathering degree on silicon isotopic fractionation during adsorption onto iron oxides in basaltic ash soils, Cameroon. Geochim Cosmochim Acta 73:7226–7240

    Article  CAS  Google Scholar 

  • Opfergelt S, Cardinal D, André L, Delvigne C, Bremond L, Delvaux B (2010) Variations of 30Si and Ge/Si with weathering and biogenic input in tropical basaltic ash soils under monoculture. Geochim Cosmochim Acta 74:225–240

    Article  CAS  Google Scholar 

  • Ostatek-Boczynski ZA, Haysom MB (2003) The determination of silicon in sugarcane tissue using a microwave-assisted acid and alkali digestion procedure. In: Currie LP, Hanley JA (ed) Tools for nutrient and pollution management (Occasional report No 17). Fertilizer and Line Research Centre, Massey University, Palmerston North, pp 419–424

    Google Scholar 

  • Osuna-Canizales FJ, DeDatta SK, Bonman JM (1991) Nitrogen form and silicon nutrition effects on resistance to blast disease of rice. Plant Soil 135:223–231

    Article  Google Scholar 

  • Owino-Gerroh C, Gascho GJ (2004) Effect of silicon on low pH soil phosphorus sorption and on uptake and growth of maize. Commun Soil Sci Plant Anal 35:2369–2378

    Article  CAS  Google Scholar 

  • Panov NP, Goncharova NA, Rodionova LP (1982) The role of amorphous silicic acid in solonetz soil processes. Vestnik Agr Sci 11:18

    Google Scholar 

  • Parfitt RL (1978) Anion adsorption by soils and soil materials. Adv Agron 30:1–50

    Article  CAS  Google Scholar 

  • Park CS (2001) Past and future advances in silicon research in the Republic of Korea. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier Science. B.V, Amsterdam, pp 359–372

    Chapter  Google Scholar 

  • Park YS, Oh WK, Park CS (1964) A study of the silica content of the rice plant. Res Rep Rural Dev Suwon 7:31–38

    Google Scholar 

  • Pei ZF, Ming DF, Liu D et al (2010) Silicon improves the tolerance of water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Reg 29:106–115

    Article  CAS  Google Scholar 

  • Pereira HS, Korndörfer GH, Moura WF et al (2003) Extractors of available silicon in slags and fertilizers. Rev Bras Ci Solo 27:265–274

    Article  CAS  Google Scholar 

  • Pervova NE, Evdokimova TI (1984) The composition of soil solutions in the subzone of Southern taiga. Pochvovedenie 1:32–39

    Google Scholar 

  • Pokrovsky GS, Schott J, Garges F et al (2003) Iron(III)-silica interactions in aqueous solution: Insights from X-ray absorption fine structure spectroscopy. Geochim Cosmochim Acta 67:3559–3573

    Article  CAS  Google Scholar 

  • Ponnamperuma FN (1965) Dynamic aspects of flooded soils and the nutrition of the rice plant. In: The Mineral Nutrition of the Rice Plant. John Hopkins Press, Baltimore, pp 295–328

    Google Scholar 

  • Prakash NB, Chandrashekar N, Mahendra C et al (2011) Effect of foliar spray of soluble silicic acid on growth and yield parameters of wetland rice in hilly and coastal zone soils of Karnataka, South India. J Plant Nutr 34:1883–1893

    Article  CAS  Google Scholar 

  • Rafi MM, Epstein E, Falk RH (1997) Silicon deprivation causes physical abnormalities in wheat (Triticum aestivum L.). J Plant Physiol 151:497–501

    Article  CAS  Google Scholar 

  • Raghupathy B (1993) Effect of lignite fly ash on rice. Int Rice Res Notes 18:27–28

    Google Scholar 

  • Rahman MT, Kawamura L, Koyama H et al (1998) Varietal differences in the growth of rice plants in response to aluminum and silicon. Soil Sci Plant Nutr 44:423

    Article  CAS  Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207

    Article  CAS  Google Scholar 

  • Reimers NF (1990) Natural uses. Dictionary-Reference Book, Moscow

    Google Scholar 

  • Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Meunier J, Miche H et al (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209–210:326–334

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues FA, Duarte HSS, Domiciano GP (2009) Foliar application of potassium silicate reduces the intensity of soybean rust. Aust Plant Pathol 38:366–372

    Article  CAS  Google Scholar 

  • Rogalla H, Römheld V (2002) Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ 25:549–555

    Article  CAS  Google Scholar 

  • Saccone L, Conley DJ, Koning E et al (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459

    Article  CAS  Google Scholar 

  • Sauer D, Burghardt W (2000) Chemical processes in soils on artificial materials: silicate dissolution, occurrence of amorphous silica and zeolites. In: Proceedings of first international conference on soils of urban, industrial, traffic and mining areas, Essen,12–18 July 2000, vol 1, pp 339–346

    Google Scholar 

  • Sauer D, Burghardt W (2006) The occurrence and distribution of various forms of silica and zeolites in soils developed from wastes of iron production. Catena 65:247–257

    Article  CAS  Google Scholar 

  • Sauer D, Saccone L, Conley DJ et al (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108

    Article  CAS  Google Scholar 

  • Savant NK, Snyder GH, Datnoff LE (1997) Silicon management and sustainable rice production. Adv Agron 58:151–199

    Article  CAS  Google Scholar 

  • Savant NK, Korndörfer GH, Datnoff LE et al (1999) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22:1853–1903

    Google Scholar 

  • Schachtschabe lP, Heinemann CG (1967) Wasserlo sliche Kieselsa ure in Lo ßbo den. Z Pflanzenern Bodenk 118:22–35

    Google Scholar 

  • Schindler PW, Furst B, Dick R et al (1976) Ligand properties of surface silanol groups. I. Surface complex formation with Fe3+, Cu2+, Cd3+, and Pb2+. J Colloid Interface Sci 55:469

    Article  CAS  Google Scholar 

  • Schulthess CP, Tokunaga Y (1996) Metal and pH effects on adsorption of poly(vinilalcohol) by silicon oxide. Soil Sci Soc Am J 60:92

    Article  CAS  Google Scholar 

  • Schwertmann U, Taylor RM (1989) Iron oxides. In: Minerals in soil environments. Soil Science Society of America, Madison, pp 379–438

    Google Scholar 

  • Sebastian D (2012) Silica SLV results, presented at the Association of American Plant Food Control Officials Lab Services Committee Meeting, San Antonio, 21 Feb 2012. http://www.aapfco.org/meetings_aapfco.html. Accessed 8 May 2012)

  • Sebastian D, Rodrigues H, Kinsey C et al (2013) A 5-day method for determination of soluble silicon concentration in nonliquid fertilizer materials using a sodium carbonate-ammonium nitrate extractant followed by visible spectroscopy with heteropoly blue analysis: single laboratory validation. J AOAC Int 96:251–259

    Article  CAS  PubMed  Google Scholar 

  • Seyfferth A, Fendorf S (2012) Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environ Sci Tech Am Chem Soc 46:13176–13183

    Article  CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z et al (2005) Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66:1551–1559

    Article  CAS  PubMed  Google Scholar 

  • Shi GR, Cai Q, Liu C et al (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 61:45–52

    Article  CAS  Google Scholar 

  • Siever R, Woodford N (1973) Sorption of silica by clay minerals. Geochim Cosmochim Acta 37:1851–1880

    Article  CAS  Google Scholar 

  • Singh KP, Sarkar MC (1992) Phosphorus availability in soil as affected by fertilizer phosphorus, sodium silicate and farm yard manure. J Indian Soc Soil Sci 40:762–767

    CAS  Google Scholar 

  • Sistani KR, Savant NK, Reddy KC (1997) Effect of rice hull ash silicon on rice seedling growth. J Plant Nutr 20:195–201

    Article  CAS  Google Scholar 

  • Snyder GH (1991) Development of a silicon soil test for Histosol-grown rice. EREC Res Rpt, EV-1991–2, University of Florida, BelleGlade

    Google Scholar 

  • Snyder GH (2001) Methods for silicon analysis in plants, soils, and fertilizer. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier Science B.V, New York, pp 185–207

    Chapter  Google Scholar 

  • Snyder GH, Jones DB, Gascho GJ (1986) Silicon fertilization of rice on Everglades Histosols. Soil Sci Soc Am J 50:1259–1263

    Article  CAS  Google Scholar 

  • Snyder GH, Matichenkov VV, Datnoff LE (2007) Silicon. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. Taylor and Francis Group/CRC Press, Boca Raton, pp 551–565

    Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y et al (2006) Silicon pools and fluxes in soils and landscapes-a review. J Plant Nutr Soil Sci 169:310–329

    Article  CAS  Google Scholar 

  • Song Z, Wang H, Strong PJ et al (2013) Increase of available silicon by Si-rich manure for sustainable rice production. Agron Sustain Dev. doi:10.1007/s13593-013-0202-5

    Google Scholar 

  • Sparkman OD (2006) Mass spectrometry desk reference. Global View Publishing, Pittsburgh

    Google Scholar 

  • Street-Perrott FA, Barker P (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Proc Land 33:1436–1457

    Article  CAS  Google Scholar 

  • Sun L, Gong K (2001) Silicon-based materials from rice husks and their applications. Ind Eng Chem Res 40:5861–5877

    Article  CAS  Google Scholar 

  • Taber HG, Shogren D, Lu G (2002) Extraction of silicon from plant tissue with dilute HCl and HF and measurement by modified inductive coupled argon plasma procedures. Commun Soil Sci Plant Anal 33:1661–1670

    Article  CAS  Google Scholar 

  • Takahashi K (1981) Effects of slags on the growth and the silicon uptake by rice plants and the available silicates in paddy soils. Bull Shikoku Natl Agric Exp Stn 38:75–114

    CAS  Google Scholar 

  • Takahasi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comments Agric Food Chem 2:99–122

    Google Scholar 

  • Takijima Y, Wijayaratna HMS, Seneviratne CJ (1970) Nutrient deficiency and physiological disease of lowland rice in Ceylon. III. Effect of silicate fertilizers and dolomite for increasing rice yields. Soil Sci Plant Nutr 16:11–16

    Article  CAS  Google Scholar 

  • Tan KH (1994) Environmental soil science. Marcel Dekker, New York, pp 193–198

    Google Scholar 

  • Tokunaga Y (1991) Potassium silicate: a slow release potassium fertilizer. Fert Res 30:55

    Article  CAS  Google Scholar 

  • Tubaña B, Narayanaswamy C, Datnoff LE et al (2012a) Changes in pH and extractable nutrients of selected soils from the Midwest and South USA as influenced by different rates of iron calcium silicate slag. ASA-CSSA-SSSA International Annual Meetings, Cincinnati, 21–24 Oct

    Google Scholar 

  • Tubaña B, Narayanaswamy C, Kanke Y et al (2012b) Estimation of plant available silicon using different extraction procedures for selected soils from the Midwest and South USA.ASA-CSSA-SSSA International Annual Meetings, Cincinnati, 21–24 Oct

    Google Scholar 

  • Van Cappellen P (2003) Biomineralization and global biogeochemical cycles. Rev Miner Geochem 54:357–381

    Article  Google Scholar 

  • Van der Vorm PDJ (1987) Dry ashing of plant material and dissolution of the ash in HF for the colorimetric determination of silicon. Commun Soil Sci Plant Anal 18:1181–1189

    Article  Google Scholar 

  • Varela-Milla O, Rivera EB, Huang WJ et al (2013) Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test. J Soil Sci Plant Nutr 13:251–266

    Google Scholar 

  • Vasanthi ND, Saleena LM, Raj SA (2012) Silicon in day today life. World Appl Sci J 17:1425–1440

    CAS  Google Scholar 

  • Volker H, Nudling W, Adam K (1985) Verfahren zur herstellung eines mehrnahrstofffdungers. Fels-werke Peine-Salzgitter GmBH, Pat. 3538411.5 Germany

    Google Scholar 

  • Volkova VV (1980) Silicate content in soil solutions and natural waters of the Russian plain. In: Kovda VA (ed) Pedological and biogeocenotic research of the Russian lowland centre. Nauka Publication, Moscow

    Google Scholar 

  • Wada K (1989) Allophane and imogolite. In: Minerals in soil environments. Soil Science Society of America, Madison, pp 1051–1087

    Google Scholar 

  • Wada K, Greenland DJ (1970) Selective dissolution and differential infrared spectroscopy for characterization of ‘amorphous’ constituents in soil clays. Clay Miner 8:241–254

    Article  CAS  Google Scholar 

  • Wallace A (1993) Participation of silicon in cation-anion balance as possible mechanism for aluminum and iron tolerance in some gramineae. J Plant Nutr 16:547–553

    Article  CAS  Google Scholar 

  • Wang L, Wang W, Chen Q et al (2000) Silicon induced cadmium tolerance of rice seedlings. J Plant Nutr 23:1397–1406

    Article  CAS  Google Scholar 

  • Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136:3762–3770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weast RC, Aastle MJ, Beyer WH (1985) Handbook of chemistry and physics, 65th edn. CRC Press, Boca Raton

    Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  CAS  Google Scholar 

  • Williams LA, Crerar DA (1985) Silica diagenesis. II. General mechanisms. J Sed Pet 55:312–321

    Google Scholar 

  • Winslow MD (1995) Silicon: A new macronutrient deficiency in upland rice. Working document No 10. International Center of Tropical Agriculture, Cali

    Google Scholar 

  • Wonisch H, Gerard F, Dietzel M et al (2008) Occurrence of polymerized silicic acid and aluminum species in two forest soil solutions with different acidity. Geoderma 144:435–445

    Article  CAS  Google Scholar 

  • Xu G, Zhan X, Li C et al (2001) Assessing methods of available silicon in calcareous soils. Commun Soil Sci Plant Anal 32:787–801

    Article  CAS  Google Scholar 

  • Yamaji N, Mitani N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yates DM, Joyce KJ, Heaney PJ (1998) Complexation of copper with polymeric silica in aqueous solution. Appl Geochem 13:235–241

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers SA, Rao G et al (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    Article  CAS  Google Scholar 

  • Yoshida S, Ohnishi Y, Kitagishi K (1962) Chemical forms, mobility, and deposition of silicon in the rice plant. Soil Sci Plant Nutr 8:107–111

    CAS  Google Scholar 

  • Yoshida S, Forno DA, Cock JH et al (1976) Laboratory manual for physiological studies of rice, 3rd edn. International Rice Research Institute, Los Banos, pp 17–22

    Google Scholar 

  • Zhu ZJ, Wei GQ, Li J et al (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda Servaz Tubaña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tubaña, B.S., Heckman, J.R. (2015). Silicon in Soils and Plants. In: Rodrigues, F., Datnoff, L. (eds) Silicon and Plant Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-22930-0_2

Download citation

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics