Abstract
We describe a formalization of asymptotic O notation using the Isabelle/HOL proof assistant.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete mathematics: a foundation for computer science, 2nd edn. Addison-Wesley Publishing Company, Reading (1994)
Kammüller, F., Wenzel, M., Paulson, L.C.: Locales – a sectioning concept for Isabelle. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, p. 149. Springer, Heidelberg (1999)
Krueger, R., Rudnicki, P., Shelley, P.: Asymptotic notation. Part I: theory. Journal of Formalized Mathematics 11 (1999), http://mizar.org/JFM/Vol11/asympt_0.html
Krueger, R., Rudnicki, P., Shelley, P.: Asymptotic notation. Part II: examples and problems. Journal of Formalized Mathematics 11 (1999), http://mizar.org/JFM/Vol11/asympt_1.html
Nathanson, M.B.: Elementary Methods in Number Theory. Springer, New York (2000)
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)
Shapiro, H.N.: Introduction to the theory of numbers. Pure and Applied Mathematics. John Wiley & Sons Inc., New York (1983), A Wiley-Interscience Publication
Wenzel, M.: Using axiomatic type classes in Isabelle (1995), http://www.cl.cam.ac.uk/Research/HVG/Isabelle/docs.html
Type classes and overloading in higher-order logic. In: Gunther, E., Felty, A. (eds.) TPHOLs 1997, pp. 307–322. Murray Hill, New Jersey (1997)
Wenzel, M., Bauer, G.: Calculational reasoning revisited (an Isabelle/ Isar experience). In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 75–90. Springer, Heidelberg (2001)
The Coq proof assistant. Developed by the LogiCal project, http://pauillac.inria.fr/coq/coq-eng.html
The Isabelle theorem proving environment. Developed by Larry Paulson at Cambridge University and Tobias Nipkow at TU Munich, http://www.cl.cam.ac.uk/Research/HVG/Isabelle/index.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Avigad, J., Donnelly, K. (2004). Formalizing O Notation in Isabelle/HOL. In: Basin, D., Rusinowitch, M. (eds) Automated Reasoning. IJCAR 2004. Lecture Notes in Computer Science(), vol 3097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25984-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-25984-8_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22345-0
Online ISBN: 978-3-540-25984-8
eBook Packages: Springer Book Archive
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.