Skip to main content

Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6593))

Included in the following conference series:

Abstract

The exploitation of solar power for energy supply is of increasing importance. While technical development mainly takes place in the engineering disciplines, computer science offers adequate techniques for simulation, optimisation and controller synthesis.

In this paper we describe a work from this interdisciplinary area. We introduce our tool for the optimisation of parameterised solar thermal power plants, and report on the employment of genetic algorithms and neural networks for parameter synthesis. Experimental results show the applicability of our approach.

This work is based on the Fraunhofer ISE project “optisim”, which was funded by the German Ministry of Environment (project number FKZ 0325045).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  2. Bishop, J.M., Bushnell, M.J., Usher, A., Westland, S.: Genetic optimisation of neural network architectures for colour recipe prediction. In: International Joint Conference on Neural Networks and Genetic Algorithms, pp. 719–725 (1993)

    Google Scholar 

  3. Goldberg, D.E., et al.: Genetic algorithms in search, optimization, and machine learning. Addison-wesley, Reading (1989)

    MATH  Google Scholar 

  4. Hancock, P., Smith, L.: GANNET: Genetic design of a neural net for face recognition. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 292–296. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  5. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79(8), 2554 (1982)

    Article  MathSciNet  Google Scholar 

  6. Liau, E., Schmitt-Landsiedel, D.: Automatic worst case pattern generation using neural networks & genetic algorithm for estimation of switching noise on power supply lines in cmos circuits. In: European Test Workshop, IEEE, pp. 105–110 (2003)

    Google Scholar 

  7. Lopez, R.: Flood: An open source neural networks C++ library. Universitat Politècnica de Catalunya, Barcelona (2008), http://www.cimne.com/flood

    Google Scholar 

  8. Mandic, D.P., Chambers, J.A.: Recurrent neural networks for prediction: Learning algorithms, architectures and stability. Wiley, Chichester (2001)

    Book  Google Scholar 

  9. Maniezzo, V.: Genetic evolution of the topology and weight distribution of neural networks. IEEE Transactions on Neural Networks 5(1) (1994)

    Google Scholar 

  10. Morin, G.: Techno-economic design optimization of solar thermal power plants. PhD thesis, Technische Universität Braunschweig (2010)

    Google Scholar 

  11. Schimann, W., Joost, M., Werner, R.: Application of genetic algorithms to the construction of topologies for multilayer perceptrons. In: International Joint Conference on Neural Networks and Genetic Algorithms, pp. 675–682 (1993)

    Google Scholar 

  12. Software Thermoflex: software developed and distributed by Thermoflow Inc. http://www.thermoflow.com/ .

  13. Wall, M.: GAlib: A C++ library of genetic algorithm components (1996), http://lancet.mit.edu/ga/

  14. Wittwer, C.: ColSim Simulation von Regelungssystemen in aktiven Solarthermischen Anlagen. PhD thesis, Universität Karlsruhe (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richter, P., Ábrahám, E., Morin, G. (2011). Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6593. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20282-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20282-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20281-0

  • Online ISBN: 978-3-642-20282-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics