Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
DistributionChart
  • See Also
    • BoxWhiskerChart
    • Histogram
    • QuantilePlot
    • BarChart
    • ListLinePlot
    • Quantile
  • Related Guides
    • Statistical Visualization
    • Random Variables
    • Tabular Visualization
    • See Also
      • BoxWhiskerChart
      • Histogram
      • QuantilePlot
      • BarChart
      • ListLinePlot
      • Quantile
    • Related Guides
      • Statistical Visualization
      • Random Variables
      • Tabular Visualization

DistributionChart[{data1,data2,…}]

makes a distribution chart with a distribution symbol for each datai.

DistributionChart[{…,wi[datai,…],…,wj[dataj,…],…}]

makes a distribution chart with symbol features defined by the symbolic wrappers wk.

DistributionChart[{{data1,data2,…},…}]

makes a distribution chart from multiple groups of datasets {data1,data2,…}.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Data and Layouts  
Tabular Data  
Styling and Appearance  
Labeling and Legending  
Options  
AspectRatio  
BarOrigin  
BarSpacing  
Show More Show More
ChartBaseStyle  
ChartElementFunction  
ChartLabels  
ChartLayout  
ChartLegends  
ChartStyle  
LabelingFunction  
LabelingSize  
Method  
PerformanceGoal  
PlotInteractivity  
PlotTheme  
Applications  
Properties & Relations  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • BoxWhiskerChart
    • Histogram
    • QuantilePlot
    • BarChart
    • ListLinePlot
    • Quantile
  • Related Guides
    • Statistical Visualization
    • Random Variables
    • Tabular Visualization
    • See Also
      • BoxWhiskerChart
      • Histogram
      • QuantilePlot
      • BarChart
      • ListLinePlot
      • Quantile
    • Related Guides
      • Statistical Visualization
      • Random Variables
      • Tabular Visualization

DistributionChart

DistributionChart[{data1,data2,…}]

makes a distribution chart with a distribution symbol for each datai.

DistributionChart[{…,wi[datai,…],…,wj[dataj,…],…}]

makes a distribution chart with symbol features defined by the symbolic wrappers wk.

DistributionChart[{{data1,data2,…},…}]

makes a distribution chart from multiple groups of datasets {data1,data2,…}.

Details and Options

  • DistributionChart draws a representation of the distribution of values in each datai.
  • Data elements for DistributionChart can be given in the following forms:
  • dataia pure dataset
    Quantity[datai,unit]data datai with units
    wi[datai,…]data veci with wrapper wi
    formi->midata with metadata mi
  • Each datai should be a list of real numbers {y1,y2,…}. Elements yj that are not real numbers are taken to be missing and are excluded. If datai is not a list of real numbers, it is taken to be missing data and will typically result in a gap in the distribution chart.
  • Datasets for DistributionChart can be given in the following forms:
  • {data1,data2,…}list of elements with or without wrappers
    <|k1data1,k2data2,…|>association of keys and datasets
    TimeSeries[…],EventSeries[…],TemporalData[…]time series, event series, and temporal data
    WeightedData[…],EventData[…]augmented datasets
    w[{data1,data2,…},…]wrapper applied to a grouped dataset
    w[{{data1,data1,…},…},…]wrapper applied to all grouped datasets
  • DistributionChart[Tabular[…]cspec] extracts and plots values from the tabular object using the column specification cspec.
  • The following forms of column specifications cspec are allowed for plotting tabular data:
  • colxplot a distribution chart for the values in column colx
    {colx1,colx2,…}plot distribution charts for columns colx1, colx2, …
  • The following wrappers can be used for the datai:
  • Annotation[e,label]provide an annotation
    Button[e,action]define an action to execute when the element is clicked
    Callout[e,label]display the element with a callout
    EventHandler[e,…]define a general event handler for the element
    Hyperlink[e,uri]make the element act as a hyperlink
    Labeled[e,…]display the element with labeling
    Legended[e,…]include features of the element in a chart legend
    Mouseover[e,over]make the element show a mouseover form
    PopupWindow[e,cont]attach a popup window to the element
    StatusArea[e,label]display in the status area when the element is moused over
    Style[e,opts]show the element using the specified styles
    Tooltip[e,label]attach an arbitrary tooltip to the element
  • DistributionChart has the same options as Graphics, with the following additions and changes: [List of all options]
  • AspectRatio 1/GoldenRatiooverall ratio of height to width
    BarOrigin Bottomorigin placement for shapes
    BarSpacing Automaticfractional spacing between shapes
    ChartBaseStyle Automaticoverall style for shapes
    ChartElementFunction Automatichow to generate raw graphics for shapes
    ChartLabels Nonelabels for data elements and datasets
    ChartLayout Automaticoverall layout to use
    ChartLegends Nonelegends for data elements and datasets
    ChartStyle Automaticstyle for shapes
    FrameTruewhether to draw a frame around the chart
    LabelingFunction Automatichow to label shapes
    LabelingSize Automaticmaximum size of callouts and labels
    LegendAppearanceAutomaticoverall appearance of legends
    Method Automaticwhat methods to use
    PerformanceGoal $PerformanceGoalaspects of performance to try to optimize
    PlotInteractivity $PlotInteractivitywhether to allow interactive elements
    PlotTheme $PlotThemeoverall theme for the chart
    ScalingFunctionsNonehow to scale individual coordinates
    TargetUnitsAutomaticunits to display in the chart
  • The following settings for ChartLayout can be used to display multiple sets of data:
  • "Stacked"separate the data for each dataset
    "Overlapped"overlap the data for each dataset
  • The arguments supplied to ChartElementFunction are the box region {{xmin,xmax},{ymin,ymax}}, the data vector veci, and metadata {m1,m2,…} from each level in a nested list of datasets.
  • A list of built-in settings for ChartElementFunction can be obtained from ChartElementData["DistributionChart"].
  • With ScalingFunctions->s, the data coordinate is scaled using s.
  • Style and other specifications from options and other constructs in DistributionChart are effectively applied in the order ChartStyle, Style and other wrappers, and ChartElementFunction, with later specifications overriding earlier ones.
  • List of all options
  • Highlight options with settings specific to DistributionChart
  • AlignmentPointCenterthe default point in the graphic to align with
    AspectRatio1/GoldenRatiooverall ratio of height to width
    AxesFalsewhether to draw axes
    AxesLabelNoneaxes labels
    AxesOriginAutomaticwhere axes should cross
    AxesStyle{}style specifications for the axes
    BackgroundNonebackground color for the plot
    BarOriginBottomorigin placement for shapes
    BarSpacingAutomaticfractional spacing between shapes
    BaselinePositionAutomatichow to align with a surrounding text baseline
    BaseStyle{}base style specifications for the graphic
    ChartBaseStyleAutomaticoverall style for shapes
    ChartElementFunctionAutomatichow to generate raw graphics for shapes
    ChartLabelsNonelabels for data elements and datasets
    ChartLayoutAutomaticoverall layout to use
    ChartLegendsNonelegends for data elements and datasets
    ChartStyleAutomaticstyle for shapes
    ContentSelectableAutomaticwhether to allow contents to be selected
    CoordinatesToolOptionsAutomaticdetailed behavior of the coordinates tool
    Epilog{}primitives rendered after the main plot
    FormatTypeTraditionalFormthe default format type for text
    FrameTruewhether to draw a frame around the chart
    FrameLabelNoneframe labels
    FrameStyle{}style specifications for the frame
    FrameTicksAutomaticframe ticks
    FrameTicksStyle{}style specifications for frame ticks
    GridLinesNonegrid lines to draw
    GridLinesStyle{}style specifications for grid lines
    ImageMargins0.the margins to leave around the graphic
    ImagePaddingAllwhat extra padding to allow for labels etc.
    ImageSizeAutomaticthe absolute size at which to render the graphic
    LabelingFunctionAutomatichow to label shapes
    LabelingSizeAutomaticmaximum size of callouts and labels
    LabelStyle{}style specifications for labels
    LegendAppearanceAutomaticoverall appearance of legends
    MethodAutomaticwhat methods to use
    PerformanceGoal$PerformanceGoalaspects of performance to try to optimize
    PlotInteractivity$PlotInteractivitywhether to allow interactive elements
    PlotLabelNonean overall label for the plot
    PlotRangeAllrange of values to include
    PlotRangeClippingFalsewhether to clip at the plot range
    PlotRangePaddingAutomatichow much to pad the range of values
    PlotRegionAutomaticthe final display region to be filled
    PlotTheme$PlotThemeoverall theme for the chart
    PreserveImageOptionsAutomaticwhether to preserve image options when displaying new versions of the same graphic
    Prolog{}primitives rendered before the main plot
    RotateLabelTruewhether to rotate y labels on the frame
    ScalingFunctionsNonehow to scale individual coordinates
    TargetUnitsAutomaticunits to display in the chart
    TicksAutomaticaxes ticks
    TicksStyle{}style specifications for axes ticks

Examples

open all close all

Basic Examples  (4)

Generate a distribution chart of a list of datasets:

Multiple list of datasets:

Use categorical labels:

Categorical legends:

Style the shapes:

Use procedural shapes:

Histogram bars:

Scope  (35)

Data and Layouts  (17)

Single data vector:

Multiple data vectors:

Data vectors in a dataset are grouped together:

Datasets do not need to have the same number of data vectors:

Nonreal data is taken to be missing and typically yields a gap in the box-and-whisker chart:

Nonreal entries in data vectors are omitted:

The data may include units:

Specify the units to use:

The time stamps in TimeSeries, EventSeries, and TemporalData are ignored:

The values in associations are taken as the heights of the bars:

Use the keys as labels:

Use the keys as legends:

Associations can be nested:

Use WeightedData to add weights to data:

Use EventData to add censoring and truncation information:

Use wrappers on individual data vectors, datasets, or collections of datasets:

Inner wrappers take precedence over outer wrappers:

Override the default tooltips:

Use PopupWindow to provide additional drilldown information:

Use the other charting functions in a PopupWindow to provide more information:

Button can be used to trigger any action:

Tabular Data  (1)

Get tabular data:

Generate a distribution chart for flipper lengths:

Create a table with flipper lengths divided into columns by species:.

Compare flipper lengths by species:

Use abbreviated names for extended keys when the elements are unique:

Styling and Appearance  (9)

Use an explicit list of styles for the shapes:

Use any gradient or indexed color schemes from ColorData:

Use color schemes designed for charting:

ChartBaseStyle can be used to set an initial style for all chart elements:

Style can be used to override styles:

Use built-in programmatically generated shapes:

For detailed settings, use Palettes ▶ ChartElementSchemes:

Change the origin of shapes:

Adjust the spacing between individuals and groups of shapes:

Use a theme with dark background and high-contrast styles:

Use a theme with bright colors and grid lines:

Labeling and Legending  (8)

Use Labeled to add a label to a shape:

Use symbolic positions for label placement:

Provide categorical labels for the columns of data:

For rows of data:

For both:

Use Placed to control the positioning of labels, using the same positions as for Labeled:

Provide value labels for shapes by using LabelingFunction:

Use Placed to control placement and formatting:

Add categorical legend entries for the columns of data:

For a row of data:

Use Legended to add additional legend entries:

Use Placed to affect the positioning of legends:

Options  (46)

AspectRatio  (3)

By default, DistributionChart uses a fixed height to width ratio for the plot:

Make the height the same as the width with AspectRatio1:

AspectRatioFull adjusts the height and width to tightly fit inside other constructs:

BarOrigin  (1)

Change bar origin:

BarSpacing  (4)

DistributionChart automatically selects the spacing between bars:

With groups of data:

Use symbolic spacing:

With groups of data:

Use explicit spacing between bars:

With groups of data:

Use no bar spacing:

Within groups of data:

ChartBaseStyle  (3)

Use ChartBaseStyle to style box-and-whisker plots:

ChartBaseStyle combines with ChartStyle:

ChartStyle may override settings for ChartBaseStyle:

ChartElementFunction  (5)

Get a list of built-in settings for ChartElementFunction:

For detailed settings, use Palettes ▶ ChartElementSchemes:

Shade the default violin bars according to density:

Use bands to mark decile boundaries:

Write a custom ChartElementFunction:

ChartLabels  (8)

By default, labels are placed under the frame:

Use Placed to control label placement:

Symbolic positions outside the bar:

Use group labels to label groups:

Coordinate-based placement relative to a bar:

Place all labels at the upper-right corner and vary the coordinates within the label:

Use the third argument to Placed to control formatting:

Place multiple labels:

ChartLayout  (2)

ChartLayout is grouped by default:

Use overlapped layout:

ChartLegends  (1)

Generate a legend based on chart style:

Use Placed to change the legend location:

ChartStyle  (4)

Use ChartStyle to style the bars:

Give a list of styles:

Use the "Gradients" color scheme from ColorData:

Use the "Indexed" color scheme from ColorData:

Styles are used cyclically:

Style datasets in a group:

Style groups of datasets:

LabelingFunction  (2)

By default, bars have tooltips with a summary table of the data:

Define a labeling function and place it in the tooltip:

LabelingSize  (4)

Textual labels are shown at their actual sizes:

Image labels are automatically resized:

Specify a maximum size for textual labels:

Specify a maximum size for image labels:

Show image labels at their natural sizes:

Method  (1)

Use bar widths proportional to the square root of the data sizes:

Put bars on fixed positions with varying bar spacing:

Use constant width bars:

PerformanceGoal  (3)

Generate a distribution chart with interactive highlighting:

Emphasize performance by disabling interactive behaviors:

Typically, less memory is required for non-interactive charts:

PlotInteractivity  (4)

Charts with a moderate number of bars automatically have tooltips and mouseover effects:

Turn off all the interactive elements:

Interactive elements provided as part of the input are disabled:

Allow provided interactive elements and disable automatic ones:

PlotTheme  (1)

Use a theme with bright colors and grid lines:

Add a theme with frame and vertical lines:

Change the grid lines style:

Applications  (2)

Compare the distribution of salaries for several departments at a university:

Compare different time slices for a random process:

Properties & Relations  (6)

Use BoxWhiskerChart to show the distribution of data:

BoxWhiskerChart is a special case of DistributionChart:

Use Histogram and SmoothHistogram to visualize lists of data vectors:

The default shapes used by DistributionChart are effectively generated using SmoothHistogram:

Use QuantilePlot and ProbabilityPlot to compare data to distributions:

Use Histogram3D and SmoothHistogram3D to visualize 2D data:

See Also

BoxWhiskerChart  Histogram  QuantilePlot  BarChart  ListLinePlot  Quantile

Related Guides

    ▪
  • Statistical Visualization
  • ▪
  • Random Variables
  • ▪
  • Tabular Visualization

History

Introduced in 2010 (8.0) | Updated in 2012 (9.0) ▪ 2014 (10.0) ▪ 2018 (11.3) ▪ 2025 (14.2) ▪ 2025 (14.3)

Wolfram Research (2010), DistributionChart, Wolfram Language function, https://reference.wolfram.com/language/ref/DistributionChart.html (updated 2025).

Text

Wolfram Research (2010), DistributionChart, Wolfram Language function, https://reference.wolfram.com/language/ref/DistributionChart.html (updated 2025).

CMS

Wolfram Language. 2010. "DistributionChart." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/DistributionChart.html.

APA

Wolfram Language. (2010). DistributionChart. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DistributionChart.html

BibTeX

@misc{reference.wolfram_2025_distributionchart, author="Wolfram Research", title="{DistributionChart}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/DistributionChart.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_distributionchart, organization={Wolfram Research}, title={DistributionChart}, year={2025}, url={https://reference.wolfram.com/language/ref/DistributionChart.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English