Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
FunctionLayer
  • See Also
    • NetTrain
    • NetGraph
    • NetChain
    • NetArray
    • NetArrayLayer
    • ThreadingLayer
    • ElementwiseLayer
    • AggregationLayer
    • Function
    • NetReplacePart
    • NetExtract
    • NumericArray
  • Related Guides
    • Neural Network Layers
  • Tech Notes
    • Neural Networks in the Wolfram Language
    • See Also
      • NetTrain
      • NetGraph
      • NetChain
      • NetArray
      • NetArrayLayer
      • ThreadingLayer
      • ElementwiseLayer
      • AggregationLayer
      • Function
      • NetReplacePart
      • NetExtract
      • NumericArray
    • Related Guides
      • Neural Network Layers
    • Tech Notes
      • Neural Networks in the Wolfram Language

FunctionLayer[f]

represents a net layer that applies function f to its input.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Input/Output  
Normalization  
Distances  
Show More Show More
Structural  
Fixed and Learnable Arrays  
Random Numbers  
Debugging with Echo  
Possible Issues  
See Also
Tech Notes
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • NetTrain
    • NetGraph
    • NetChain
    • NetArray
    • NetArrayLayer
    • ThreadingLayer
    • ElementwiseLayer
    • AggregationLayer
    • Function
    • NetReplacePart
    • NetExtract
    • NumericArray
  • Related Guides
    • Neural Network Layers
  • Tech Notes
    • Neural Networks in the Wolfram Language
    • See Also
      • NetTrain
      • NetGraph
      • NetChain
      • NetArray
      • NetArrayLayer
      • ThreadingLayer
      • ElementwiseLayer
      • AggregationLayer
      • Function
      • NetReplacePart
      • NetExtract
      • NumericArray
    • Related Guides
      • Neural Network Layers
    • Tech Notes
      • Neural Networks in the Wolfram Language

FunctionLayer

FunctionLayer[f]

represents a net layer that applies function f to its input.

Details and Options

  • FunctionLayer is used to define neural nets from usual Wolfram Language code.
  • FunctionLayer[f][x] behaves in the same way as f[x].
  • The function f should involve only valid operations on arrays that produce an array or an association of arrays.
  • Valid operations include arithmetic functions (Plus, Times, etc.), elementary functions (Exp, Sqrt, Sin, etc.), numerical functions (Min, Round, Ramp, etc.), array constructions (Table, ConstantArray, etc.), array operations (Dot, Det, Tr, etc.), descriptive statistics (Mean, StandardDeviation, etc.) and distance and similarities (EuclideanDistance, HammingDistance, etc.). It is also possible to use looping constructs (Map, NestList, FoldList, etc.) and list manipulation functions (Part, Reverse, etc.).
  • Function f must take only one argument as input. The argument can be an array or an association of arrays.
  • If the argument of f is a unique array, f can be defined by a pure function, a symbol or a composition of these. The resulting layer will have a unique input port called "Input".
  • FunctionLayer[Sin[#]&] ⟶ FunctionLayer[]
  • If the argument of f is an association of arrays, f should be defined using named slots. The resulting layer will have ports named after the slots.
  • FunctionLayer[#Foo+#Bar&] ⟶ FunctionLayer[]
  • FunctionLayer can also be given a multiple-argument function f using the syntax FunctionLayer[Apply[f]]. In this case, ports are named automatically.
  • FunctionLayer[Apply[#1+#2&]] ⟶ FunctionLayer[]
  • The output of f must be a unique array (which corresponds to a unique port) or an association of arrays (which corresponds to multiple ports).
  • FunctionLayer[<|"Foo"Sin[#],"Bar"#|>&]⟶ FunctionLayer[]
  • FunctionLayer[f,"port"shape] can be used as in NetGraph to specify the shape, encoder or decoder of a given port.
  • NetArray can be used inside the function f to define learnable parameters.
  • The function f is internally converted into a net that can be a layer or a graph of layers. NetExtract can be used to extract layers and parameters from a function layer.
  • NetGraph[FunctionLayer[…]] converts the function layer into a NetGraph[…].
  • Information[FunctionLayer[…]] gives a report about the layer.
  • Information[FunctionLayer[…],prop] gives the value of the property prop of FunctionLayer[…]. Possible properties are the same as for NetGraph.

Examples

open all close all

Basic Examples  (2)

Define a layer that computes the StandardDeviation on some array:

The layer evaluates the same values as the symbol:

Extract the original function:

Get a net layer that is equivalent to StandardDeviation:

Get a NetGraph that is equivalent to StandardDeviation:

FunctionLayer can be used inside NetChain and NetGraph:

Scope  (18)

Input/Output  (4)

Define a layer that computes a function that takes an input vector and yields an output vector:

Extract the original function:

Extract an equivalent NetGraph:

Convert into a net a function that takes an array and returns an association of arrays:

The net returns the same values as the function:

Convert into a net a function that takes an association of arrays:

Apply the net on an association of arrays:

Convert into a net a function that takes a list of arrays:

Apply the net on a list of numbers:

Apply the net on a list of arrays:

The original function gives the same result:

Normalization  (3)

Define a NetGraph that does the same computation as Normalize:

Get the layer equivalent to Standardize:

Get a NetGraph equivalent to some custom standardization:

Distances  (1)

Get the NetGraph corresponding to different distances:

Structural  (3)

Get the net layers that perform given structural operations on arrays:

Get the net layers that extract values at particular positions in arrays:

Create a FunctionLayer that computes the unit vector at a given position:

Fixed and Learnable Arrays  (1)

Fixed arrays can be specified with lists, and arrays of learnable parameters can be specified by NetArray:

The list {0.25,0.75} corresponds to a frozen NetArrayLayer with null LearningRateMultipliers:

NetArray[{2},"Array"{0.1,0.9}] corresponds to a NetArrayLayer with a pair of learnable values initialized to {0.1,0.9}:

Random Numbers  (5)

Create a net that randomly chooses between two input arrays:

Repeat a random choice 10 times:

Create a net that adds a grayscale mask with a random value to an image:

Apply the net to an image:

Create a net that adds a mask with a random color to an image:

Apply the net to an image:

Create a net that adds random noise to the lines of pixels of an image:

Apply the net to an image:

Create a net that adds random noise to the pixels of an image:

Apply the net to an image:

Debugging with Echo  (1)

Connect some intermediate computations as an output port of a net:

Call the net to get the values:

EchoTiming is not supported:

Possible Issues  (1)

Functions mixing several arguments are not supported:

Named inputs must be used to define a net layer with multiple inputs:

See Also

NetTrain  NetGraph  NetChain  NetArray  NetArrayLayer  ThreadingLayer  ElementwiseLayer  AggregationLayer  Function  NetReplacePart  NetExtract  NumericArray

Tech Notes

    ▪
  • Neural Networks in the Wolfram Language

Related Guides

    ▪
  • Neural Network Layers

History

Introduced in 2020 (12.2)

Wolfram Research (2020), FunctionLayer, Wolfram Language function, https://reference.wolfram.com/language/ref/FunctionLayer.html.

Text

Wolfram Research (2020), FunctionLayer, Wolfram Language function, https://reference.wolfram.com/language/ref/FunctionLayer.html.

CMS

Wolfram Language. 2020. "FunctionLayer." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FunctionLayer.html.

APA

Wolfram Language. (2020). FunctionLayer. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FunctionLayer.html

BibTeX

@misc{reference.wolfram_2025_functionlayer, author="Wolfram Research", title="{FunctionLayer}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/FunctionLayer.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_functionlayer, organization={Wolfram Research}, title={FunctionLayer}, year={2020}, url={https://reference.wolfram.com/language/ref/FunctionLayer.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English