Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
LayeredGraphPlot
  • See Also
    • Graph
    • TreePlot
    • GraphPlot
    • GraphPlot3D
    • CommunityGraphPlot
    • GraphLayout
    • GraphEmbedding
    • LayeredGraphPlot3D
  • Related Guides
    • Graph Visualization
    • Data Visualization
    • Social Network Analysis
    • See Also
      • Graph
      • TreePlot
      • GraphPlot
      • GraphPlot3D
      • CommunityGraphPlot
      • GraphLayout
      • GraphEmbedding
      • LayeredGraphPlot3D
    • Related Guides
      • Graph Visualization
      • Data Visualization
      • Social Network Analysis

LayeredGraphPlot[g]

generates a layered plot of the graph g.

LayeredGraphPlot[{e1,e2,…}]

generates a layered plot of the graph with edges ej.

LayeredGraphPlot[{…,w[ei],…}]

plots ei with features defined by the symbolic wrapper w.

LayeredGraphPlot[{vi 1vj 1,…}]

uses rules vikvjk to specify the graph g.

LayeredGraphPlot[m]

uses the adjacency matrix m to specify the graph g.

LayeredGraphPlot[…,vpos]

places the dominant vertex v in the plot at position pos.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Graph Specification  
Graph Styling  
Options  
AspectRatio  
Axes  
AxesLabel  
Show More Show More
AxesOrigin  
AxesStyle  
DataRange  
DirectedEdges  
Frame  
FrameLabel  
FrameStyle  
FrameTicks  
FrameTicksStyle  
ImageSize  
PlotStyle  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • Graph
    • TreePlot
    • GraphPlot
    • GraphPlot3D
    • CommunityGraphPlot
    • GraphLayout
    • GraphEmbedding
    • LayeredGraphPlot3D
  • Related Guides
    • Graph Visualization
    • Data Visualization
    • Social Network Analysis
    • See Also
      • Graph
      • TreePlot
      • GraphPlot
      • GraphPlot3D
      • CommunityGraphPlot
      • GraphLayout
      • GraphEmbedding
      • LayeredGraphPlot3D
    • Related Guides
      • Graph Visualization
      • Data Visualization
      • Social Network Analysis

LayeredGraphPlot

LayeredGraphPlot[g]

generates a layered plot of the graph g.

LayeredGraphPlot[{e1,e2,…}]

generates a layered plot of the graph with edges ej.

LayeredGraphPlot[{…,w[ei],…}]

plots ei with features defined by the symbolic wrapper w.

LayeredGraphPlot[{vi 1vj 1,…}]

uses rules vikvjk to specify the graph g.

LayeredGraphPlot[m]

uses the adjacency matrix m to specify the graph g.

LayeredGraphPlot[…,vpos]

places the dominant vertex v in the plot at position pos.

Details and Options

  • LayeredGraphPlot attempts to place vertices in a series of "layers".
  • LayeredGraphPlot supports the same vertices and edges as Graph.
  • The following special wrappers can be used for the edges ei:
  • Annotation[ei,label]provide an annotation
    Button[ei,action]define an action to execute when the element is clicked
    EventHandler[ei,…]define a general event handler for the element
    Hyperlink[ei,uri]make the element act as a hyperlink
    Labeled[ei,…]display the element with labeling
    PopupWindow[ei,cont]attach a popup window to the element
    StatusArea[ei,label]display in the status area when the element is moused over
    Style[ei,opts]show the element using the specified styles
    Tooltip[ei,label]attach an arbitrary tooltip to the element
  • LayeredGraphPlot by default puts "dominant" vertices at the top, and puts vertices lower in the "hierarchy" progressively further down.
  • LayeredGraphPlot[g,pos] places the dominant vertices at position pos.
  • Possible positions pos are: Top, Bottom, Left, Right.
  • By default, LayeredGraphPlot places each dominant vertex at the top.
  • LayeredGraphPlot has the same options as Graphics, with the following additions and changes: [List of all options]
  • DataRange Automaticthe range of vertex coordinates to generate
    DirectedEdges Automaticwhether to interpret Rule as DirectedEdge
    EdgeLabelsNonelabels and placements for edges
    EdgeLabelStyleAutomaticstyle to use for edge labels
    EdgeShapeFunctionAutomaticgenerate graphic shapes for edges
    EdgeStyleAutomaticstyles for edges
    GraphHighlight{}vertices and edges to highlight
    GraphHighlightStyleAutomaticstyle for highlight
    PerformanceGoalAutomaticaspects of performance to try to optimize
    PlotStyle Automaticgraphics directives to determine styles
    PlotThemeAutomaticoverall theme for the graph
    VertexCoordinatesAutomaticcoordinates for vertices
    VertexLabelsNonelabels and placements for vertices
    VertexLabelStyleAutomaticstyle to use for vertex labels
    VertexShapeAutomaticgraphic shape for vertices
    VertexShapeFunctionAutomaticgenerate graphic shapes for vertices
    VertexSizeAutomaticsize of vertices
    VertexStyleAutomaticstyles for vertices
  • Possible settings for PlotTheme include common base themes:
  • "Business"a bright, modern look appropriate for business presentations or infographics
    "Detailed"identify data by employing labels and tooltips
    "Marketing"elegant, eye-catching design suitable for marketing needs
    "Minimal"simple graph
    "Monochrome"single-color design
    "Scientific"candid design useful for analyzing detailed data with labels and tooltips
    "Web"clean, bold design suitable for a consumer website or blog
    "Classic"historical design of graph to remain compatible with existing uses
  • Graph features themes affect plot of vertices and edges. Feature themes include:
  • "LargeGraph"large graph
    "ClassicLabeled"classic graph
    "IndexLabeled"index-labeled graph
  • List of all options

    • AlignmentPointCenterthe default point in the graphic to align with
      AspectRatioAutomaticratio of height to width
      AxesFalsewhether to draw axes
      AxesLabelNoneaxes labels
      AxesOriginAutomaticwhere axes should cross
      AxesStyle{}style specifications for the axes
      BackgroundNonebackground color for the plot
      BaselinePositionAutomatichow to align with a surrounding text baseline
      BaseStyle{}base style specifications for the graphic
      ContentSelectableAutomaticwhether to allow contents to be selected
      CoordinatesToolOptionsAutomaticdetailed behavior of the coordinates tool
      DataRangeAutomaticthe range of vertex coordinates to generate
      DirectedEdgesAutomaticwhether to interpret Rule as DirectedEdge
      EdgeLabelsNonelabels and placements for edges
      EdgeLabelStyleAutomaticstyle to use for edge labels
      EdgeShapeFunctionAutomaticgenerate graphic shapes for edges
      EdgeStyleAutomaticstyles for edges
      Epilog{}primitives rendered after the main plot
      FormatTypeTraditionalFormthe default format type for text
      FrameFalsewhether to put a frame around the plot
      FrameLabelNoneframe labels
      FrameStyle{}style specifications for the frame
      FrameTicksAutomaticframe ticks
      FrameTicksStyle{}style specifications for frame ticks
      GraphHighlight{}vertices and edges to highlight
      GraphHighlightStyleAutomaticstyle for highlight
      GridLinesNonegrid lines to draw
      GridLinesStyle{}style specifications for grid lines
      ImageMargins0.the margins to leave around the graphic
      ImagePaddingAllwhat extra padding to allow for labels etc.
      ImageSizeAutomaticthe absolute size at which to render the graphic
      LabelStyle{}style specifications for labels
      MethodAutomaticdetails of graphics methods to use
      PerformanceGoalAutomaticaspects of performance to try to optimize
      PlotLabelNonean overall label for the plot
      PlotRangeAllrange of values to include
      PlotRangeClippingFalsewhether to clip at the plot range
      PlotRangePaddingAutomatichow much to pad the range of values
      PlotRegionAutomaticthe final display region to be filled
      PlotStyleAutomaticgraphics directives to determine styles
      PlotThemeAutomaticoverall theme for the graph
      PreserveImageOptionsAutomaticwhether to preserve image options when displaying new versions of the same graphic
      Prolog{}primitives rendered before the main plot
      RotateLabelTruewhether to rotate y labels on the frame
      TicksAutomaticaxes ticks
      TicksStyle{}style specifications for axes ticks
      VertexCoordinatesAutomaticcoordinates for vertices
      VertexLabelsNonelabels and placements for vertices
      VertexLabelStyleAutomaticstyle to use for vertex labels
      VertexShapeAutomaticgraphic shape for vertices
      VertexShapeFunctionAutomaticgenerate graphic shapes for vertices
      VertexSizeAutomaticsize of vertices
      VertexStyleAutomaticstyles for vertices

Examples

open all close all

Basic Examples  (5)

Plot a graph:

Plot a graph specified by edge rules:

Plot a graph specified by its adjacency matrix:

Drawing a graph with different orientation from the default:

Specify the root node:

Scope  (9)

Graph Specification  (4)

Specify a graph using a graph:

Specify a graph using a rule list:

Specify a graph using a dense adjacency matrix:

Specify a graph using a sparse adjacency matrix:

Graph Styling  (5)

Give labels for some edges:

Give vertex labels:

Show edges as lines:

Plot a disconnected graph using different packing methods:

Draw with different orientations:

Options  (50)

AspectRatio  (4)

By default, the ratio of the height to width for the plot is determined automatically:

Make the height the same as the width with AspectRatio1:

Use numerical value to specify the height-to-width ratio:

AspectRatioFull adjusts the height and width to tightly fit inside other constructs:

Axes  (3)

By default, Axes are not drawn for LayeredGraphPlot:

Use AxesTrue to turn on axes:

Turn each axis on individually:

AxesLabel  (3)

No axes labels are drawn by default:

Place a label on the axis:

Specify axes labels:

AxesOrigin  (2)

The position of the axes is determined automatically:

Specify an explicit origin for the axes:

AxesStyle  (4)

Change the style for the axes:

Specify the style of each axis:

Use different styles for the ticks and the axes:

Use different styles for the labels and the axes:

DataRange  (1)

Specify the range of vertex coordinates:

DirectedEdges  (2)

By default edges are shown as arrows:

Do not show the direction of edges:

Frame  (4)

LayeredGraphPlot does not use a frame by default:

Use FrameTrue to draw a frame around the plot:

Draw a frame on the left and right edges:

Draw a frame on the left and bottom edges:

FrameLabel  (4)

Place a label along the bottom frame of a plot:

Frame labels are placed on the bottom and left frame edges by default:

Place labels on each of the edges in the frame:

Use a customized style for both labels and frame tick labels:

FrameStyle  (2)

Specify the style of the frame:

Specify the style for each frame edge:

FrameTicks  (8)

Frame ticks are not placed automatically by default:

Use a frame with ticks:

Use frame ticks on the bottom edge:

Use All to include tick labels on all edges:

Place tick marks at specific positions:

Draw frame tick marks at the specified positions with specific labels:

Specify the lengths for tick marks as a fraction of the graphics size:

Use different sizes in the positive and negative directions for each tick mark:

Specify a style for each frame tick:

FrameTicksStyle  (3)

By default, the frame ticks and frame tick labels use the same styles as the frame:

Specify an overall style for the ticks, including the labels:

Use different style for the different frame edges:

ImageSize  (7)

Use named sizes such as Tiny, Small, Medium and Large:

Specify the width of the plot:

Specify the height of the plot:

Allow the width and height to be up to a certain size:

Specify the width and height for a graphic, padding with space if necessary:

Setting AspectRatioFull will fill the available space:

Use maximum sizes for the width and height:

Use ImageSizeFull to fill the available space in an object:

Specify the image size as a fraction of the available space:

PlotStyle  (3)

Specify an overall style for the graph:

PlotStyle can be combined with VertexShapeFunction, which has higher priority:

PlotStyle can be combined with EdgeShapeFunction, which has higher priority:

Applications  (5)

A food chain:

A chart showing the relationships between shapes:

A flow chart for a computer program:

A visual representation of a straight-line program, used for common subexpression elimination:

The relationships between early versions of the Unix operating system:

Properties & Relations  (3)

TreePlot provides a layered layout ignoring the direction of edges:

Use GraphPlot or GraphPlot3D for general undirected graph drawing:

Use ArrayPlot or MatrixPlot to display matrices:

Possible Issues  (1)

When vertex coordinates are specified, all edges are shown as straight lines:

If explicit vertex coordinates are not specified, curved edges will be used:

Neat Examples  (1)

Plot isotope decay networks:

Uranium-235:

Polonium-189:

Plutonium-239:

See Also

Graph  TreePlot  GraphPlot  GraphPlot3D  CommunityGraphPlot  GraphLayout  GraphEmbedding  LayeredGraphPlot3D

Function Repository: LayeredGraphPlot3D  DistanceLayeredGraph

Related Guides

    ▪
  • Graph Visualization
  • ▪
  • Data Visualization
  • ▪
  • Social Network Analysis

History

Introduced in 2007 (6.0) | Updated in 2019 (12.0) ▪ 2020 (12.1)

Wolfram Research (2007), LayeredGraphPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/LayeredGraphPlot.html (updated 2020).

Text

Wolfram Research (2007), LayeredGraphPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/LayeredGraphPlot.html (updated 2020).

CMS

Wolfram Language. 2007. "LayeredGraphPlot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2020. https://reference.wolfram.com/language/ref/LayeredGraphPlot.html.

APA

Wolfram Language. (2007). LayeredGraphPlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LayeredGraphPlot.html

BibTeX

@misc{reference.wolfram_2025_layeredgraphplot, author="Wolfram Research", title="{LayeredGraphPlot}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/LayeredGraphPlot.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_layeredgraphplot, organization={Wolfram Research}, title={LayeredGraphPlot}, year={2020}, url={https://reference.wolfram.com/language/ref/LayeredGraphPlot.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English