extract out shared bset_from_bmap
[isl.git] / isl_sample.c
blobeb644e5ac58c5e74b6d98c6e84a3b8fa5fafde7c
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
12 #include "isl_sample.h"
13 #include <isl/vec.h>
14 #include <isl/mat.h>
15 #include <isl_seq.h>
16 #include "isl_equalities.h"
17 #include "isl_tab.h"
18 #include "isl_basis_reduction.h"
19 #include <isl_factorization.h>
20 #include <isl_point_private.h>
21 #include <isl_options_private.h>
22 #include <isl_vec_private.h>
24 #include <bset_from_bmap.c>
26 static struct isl_vec *empty_sample(struct isl_basic_set *bset)
28 struct isl_vec *vec;
30 vec = isl_vec_alloc(bset->ctx, 0);
31 isl_basic_set_free(bset);
32 return vec;
35 /* Construct a zero sample of the same dimension as bset.
36 * As a special case, if bset is zero-dimensional, this
37 * function creates a zero-dimensional sample point.
39 static struct isl_vec *zero_sample(struct isl_basic_set *bset)
41 unsigned dim;
42 struct isl_vec *sample;
44 dim = isl_basic_set_total_dim(bset);
45 sample = isl_vec_alloc(bset->ctx, 1 + dim);
46 if (sample) {
47 isl_int_set_si(sample->el[0], 1);
48 isl_seq_clr(sample->el + 1, dim);
50 isl_basic_set_free(bset);
51 return sample;
54 static struct isl_vec *interval_sample(struct isl_basic_set *bset)
56 int i;
57 isl_int t;
58 struct isl_vec *sample;
60 bset = isl_basic_set_simplify(bset);
61 if (!bset)
62 return NULL;
63 if (isl_basic_set_plain_is_empty(bset))
64 return empty_sample(bset);
65 if (bset->n_eq == 0 && bset->n_ineq == 0)
66 return zero_sample(bset);
68 sample = isl_vec_alloc(bset->ctx, 2);
69 if (!sample)
70 goto error;
71 if (!bset)
72 return NULL;
73 isl_int_set_si(sample->block.data[0], 1);
75 if (bset->n_eq > 0) {
76 isl_assert(bset->ctx, bset->n_eq == 1, goto error);
77 isl_assert(bset->ctx, bset->n_ineq == 0, goto error);
78 if (isl_int_is_one(bset->eq[0][1]))
79 isl_int_neg(sample->el[1], bset->eq[0][0]);
80 else {
81 isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),
82 goto error);
83 isl_int_set(sample->el[1], bset->eq[0][0]);
85 isl_basic_set_free(bset);
86 return sample;
89 isl_int_init(t);
90 if (isl_int_is_one(bset->ineq[0][1]))
91 isl_int_neg(sample->block.data[1], bset->ineq[0][0]);
92 else
93 isl_int_set(sample->block.data[1], bset->ineq[0][0]);
94 for (i = 1; i < bset->n_ineq; ++i) {
95 isl_seq_inner_product(sample->block.data,
96 bset->ineq[i], 2, &t);
97 if (isl_int_is_neg(t))
98 break;
100 isl_int_clear(t);
101 if (i < bset->n_ineq) {
102 isl_vec_free(sample);
103 return empty_sample(bset);
106 isl_basic_set_free(bset);
107 return sample;
108 error:
109 isl_basic_set_free(bset);
110 isl_vec_free(sample);
111 return NULL;
114 /* Find a sample integer point, if any, in bset, which is known
115 * to have equalities. If bset contains no integer points, then
116 * return a zero-length vector.
117 * We simply remove the known equalities, compute a sample
118 * in the resulting bset, using the specified recurse function,
119 * and then transform the sample back to the original space.
121 static struct isl_vec *sample_eq(struct isl_basic_set *bset,
122 struct isl_vec *(*recurse)(struct isl_basic_set *))
124 struct isl_mat *T;
125 struct isl_vec *sample;
127 if (!bset)
128 return NULL;
130 bset = isl_basic_set_remove_equalities(bset, &T, NULL);
131 sample = recurse(bset);
132 if (!sample || sample->size == 0)
133 isl_mat_free(T);
134 else
135 sample = isl_mat_vec_product(T, sample);
136 return sample;
139 /* Return a matrix containing the equalities of the tableau
140 * in constraint form. The tableau is assumed to have
141 * an associated bset that has been kept up-to-date.
143 static struct isl_mat *tab_equalities(struct isl_tab *tab)
145 int i, j;
146 int n_eq;
147 struct isl_mat *eq;
148 struct isl_basic_set *bset;
150 if (!tab)
151 return NULL;
153 bset = isl_tab_peek_bset(tab);
154 isl_assert(tab->mat->ctx, bset, return NULL);
156 n_eq = tab->n_var - tab->n_col + tab->n_dead;
157 if (tab->empty || n_eq == 0)
158 return isl_mat_alloc(tab->mat->ctx, 0, tab->n_var);
159 if (n_eq == tab->n_var)
160 return isl_mat_identity(tab->mat->ctx, tab->n_var);
162 eq = isl_mat_alloc(tab->mat->ctx, n_eq, tab->n_var);
163 if (!eq)
164 return NULL;
165 for (i = 0, j = 0; i < tab->n_con; ++i) {
166 if (tab->con[i].is_row)
167 continue;
168 if (tab->con[i].index >= 0 && tab->con[i].index >= tab->n_dead)
169 continue;
170 if (i < bset->n_eq)
171 isl_seq_cpy(eq->row[j], bset->eq[i] + 1, tab->n_var);
172 else
173 isl_seq_cpy(eq->row[j],
174 bset->ineq[i - bset->n_eq] + 1, tab->n_var);
175 ++j;
177 isl_assert(bset->ctx, j == n_eq, goto error);
178 return eq;
179 error:
180 isl_mat_free(eq);
181 return NULL;
184 /* Compute and return an initial basis for the bounded tableau "tab".
186 * If the tableau is either full-dimensional or zero-dimensional,
187 * the we simply return an identity matrix.
188 * Otherwise, we construct a basis whose first directions correspond
189 * to equalities.
191 static struct isl_mat *initial_basis(struct isl_tab *tab)
193 int n_eq;
194 struct isl_mat *eq;
195 struct isl_mat *Q;
197 tab->n_unbounded = 0;
198 tab->n_zero = n_eq = tab->n_var - tab->n_col + tab->n_dead;
199 if (tab->empty || n_eq == 0 || n_eq == tab->n_var)
200 return isl_mat_identity(tab->mat->ctx, 1 + tab->n_var);
202 eq = tab_equalities(tab);
203 eq = isl_mat_left_hermite(eq, 0, NULL, &Q);
204 if (!eq)
205 return NULL;
206 isl_mat_free(eq);
208 Q = isl_mat_lin_to_aff(Q);
209 return Q;
212 /* Compute the minimum of the current ("level") basis row over "tab"
213 * and store the result in position "level" of "min".
215 * This function assumes that at least one more row and at least
216 * one more element in the constraint array are available in the tableau.
218 static enum isl_lp_result compute_min(isl_ctx *ctx, struct isl_tab *tab,
219 __isl_keep isl_vec *min, int level)
221 return isl_tab_min(tab, tab->basis->row[1 + level],
222 ctx->one, &min->el[level], NULL, 0);
225 /* Compute the maximum of the current ("level") basis row over "tab"
226 * and store the result in position "level" of "max".
228 * This function assumes that at least one more row and at least
229 * one more element in the constraint array are available in the tableau.
231 static enum isl_lp_result compute_max(isl_ctx *ctx, struct isl_tab *tab,
232 __isl_keep isl_vec *max, int level)
234 enum isl_lp_result res;
235 unsigned dim = tab->n_var;
237 isl_seq_neg(tab->basis->row[1 + level] + 1,
238 tab->basis->row[1 + level] + 1, dim);
239 res = isl_tab_min(tab, tab->basis->row[1 + level],
240 ctx->one, &max->el[level], NULL, 0);
241 isl_seq_neg(tab->basis->row[1 + level] + 1,
242 tab->basis->row[1 + level] + 1, dim);
243 isl_int_neg(max->el[level], max->el[level]);
245 return res;
248 /* Perform a greedy search for an integer point in the set represented
249 * by "tab", given that the minimal rational value (rounded up to the
250 * nearest integer) at "level" is smaller than the maximal rational
251 * value (rounded down to the nearest integer).
253 * Return 1 if we have found an integer point (if tab->n_unbounded > 0
254 * then we may have only found integer values for the bounded dimensions
255 * and it is the responsibility of the caller to extend this solution
256 * to the unbounded dimensions).
257 * Return 0 if greedy search did not result in a solution.
258 * Return -1 if some error occurred.
260 * We assign a value half-way between the minimum and the maximum
261 * to the current dimension and check if the minimal value of the
262 * next dimension is still smaller than (or equal) to the maximal value.
263 * We continue this process until either
264 * - the minimal value (rounded up) is greater than the maximal value
265 * (rounded down). In this case, greedy search has failed.
266 * - we have exhausted all bounded dimensions, meaning that we have
267 * found a solution.
268 * - the sample value of the tableau is integral.
269 * - some error has occurred.
271 static int greedy_search(isl_ctx *ctx, struct isl_tab *tab,
272 __isl_keep isl_vec *min, __isl_keep isl_vec *max, int level)
274 struct isl_tab_undo *snap;
275 enum isl_lp_result res;
277 snap = isl_tab_snap(tab);
279 do {
280 isl_int_add(tab->basis->row[1 + level][0],
281 min->el[level], max->el[level]);
282 isl_int_fdiv_q_ui(tab->basis->row[1 + level][0],
283 tab->basis->row[1 + level][0], 2);
284 isl_int_neg(tab->basis->row[1 + level][0],
285 tab->basis->row[1 + level][0]);
286 if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
287 return -1;
288 isl_int_set_si(tab->basis->row[1 + level][0], 0);
290 if (++level >= tab->n_var - tab->n_unbounded)
291 return 1;
292 if (isl_tab_sample_is_integer(tab))
293 return 1;
295 res = compute_min(ctx, tab, min, level);
296 if (res == isl_lp_error)
297 return -1;
298 if (res != isl_lp_ok)
299 isl_die(ctx, isl_error_internal,
300 "expecting bounded rational solution",
301 return -1);
302 res = compute_max(ctx, tab, max, level);
303 if (res == isl_lp_error)
304 return -1;
305 if (res != isl_lp_ok)
306 isl_die(ctx, isl_error_internal,
307 "expecting bounded rational solution",
308 return -1);
309 } while (isl_int_le(min->el[level], max->el[level]));
311 if (isl_tab_rollback(tab, snap) < 0)
312 return -1;
314 return 0;
317 /* Given a tableau representing a set, find and return
318 * an integer point in the set, if there is any.
320 * We perform a depth first search
321 * for an integer point, by scanning all possible values in the range
322 * attained by a basis vector, where an initial basis may have been set
323 * by the calling function. Otherwise an initial basis that exploits
324 * the equalities in the tableau is created.
325 * tab->n_zero is currently ignored and is clobbered by this function.
327 * The tableau is allowed to have unbounded direction, but then
328 * the calling function needs to set an initial basis, with the
329 * unbounded directions last and with tab->n_unbounded set
330 * to the number of unbounded directions.
331 * Furthermore, the calling functions needs to add shifted copies
332 * of all constraints involving unbounded directions to ensure
333 * that any feasible rational value in these directions can be rounded
334 * up to yield a feasible integer value.
335 * In particular, let B define the given basis x' = B x
336 * and let T be the inverse of B, i.e., X = T x'.
337 * Let a x + c >= 0 be a constraint of the set represented by the tableau,
338 * or a T x' + c >= 0 in terms of the given basis. Assume that
339 * the bounded directions have an integer value, then we can safely
340 * round up the values for the unbounded directions if we make sure
341 * that x' not only satisfies the original constraint, but also
342 * the constraint "a T x' + c + s >= 0" with s the sum of all
343 * negative values in the last n_unbounded entries of "a T".
344 * The calling function therefore needs to add the constraint
345 * a x + c + s >= 0. The current function then scans the first
346 * directions for an integer value and once those have been found,
347 * it can compute "T ceil(B x)" to yield an integer point in the set.
348 * Note that during the search, the first rows of B may be changed
349 * by a basis reduction, but the last n_unbounded rows of B remain
350 * unaltered and are also not mixed into the first rows.
352 * The search is implemented iteratively. "level" identifies the current
353 * basis vector. "init" is true if we want the first value at the current
354 * level and false if we want the next value.
356 * At the start of each level, we first check if we can find a solution
357 * using greedy search. If not, we continue with the exhaustive search.
359 * The initial basis is the identity matrix. If the range in some direction
360 * contains more than one integer value, we perform basis reduction based
361 * on the value of ctx->opt->gbr
362 * - ISL_GBR_NEVER: never perform basis reduction
363 * - ISL_GBR_ONCE: only perform basis reduction the first
364 * time such a range is encountered
365 * - ISL_GBR_ALWAYS: always perform basis reduction when
366 * such a range is encountered
368 * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
369 * reduction computation to return early. That is, as soon as it
370 * finds a reasonable first direction.
372 struct isl_vec *isl_tab_sample(struct isl_tab *tab)
374 unsigned dim;
375 unsigned gbr;
376 struct isl_ctx *ctx;
377 struct isl_vec *sample;
378 struct isl_vec *min;
379 struct isl_vec *max;
380 enum isl_lp_result res;
381 int level;
382 int init;
383 int reduced;
384 struct isl_tab_undo **snap;
386 if (!tab)
387 return NULL;
388 if (tab->empty)
389 return isl_vec_alloc(tab->mat->ctx, 0);
391 if (!tab->basis)
392 tab->basis = initial_basis(tab);
393 if (!tab->basis)
394 return NULL;
395 isl_assert(tab->mat->ctx, tab->basis->n_row == tab->n_var + 1,
396 return NULL);
397 isl_assert(tab->mat->ctx, tab->basis->n_col == tab->n_var + 1,
398 return NULL);
400 ctx = tab->mat->ctx;
401 dim = tab->n_var;
402 gbr = ctx->opt->gbr;
404 if (tab->n_unbounded == tab->n_var) {
405 sample = isl_tab_get_sample_value(tab);
406 sample = isl_mat_vec_product(isl_mat_copy(tab->basis), sample);
407 sample = isl_vec_ceil(sample);
408 sample = isl_mat_vec_inverse_product(isl_mat_copy(tab->basis),
409 sample);
410 return sample;
413 if (isl_tab_extend_cons(tab, dim + 1) < 0)
414 return NULL;
416 min = isl_vec_alloc(ctx, dim);
417 max = isl_vec_alloc(ctx, dim);
418 snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim);
420 if (!min || !max || !snap)
421 goto error;
423 level = 0;
424 init = 1;
425 reduced = 0;
427 while (level >= 0) {
428 if (init) {
429 int choice;
431 res = compute_min(ctx, tab, min, level);
432 if (res == isl_lp_error)
433 goto error;
434 if (res != isl_lp_ok)
435 isl_die(ctx, isl_error_internal,
436 "expecting bounded rational solution",
437 goto error);
438 if (isl_tab_sample_is_integer(tab))
439 break;
440 res = compute_max(ctx, tab, max, level);
441 if (res == isl_lp_error)
442 goto error;
443 if (res != isl_lp_ok)
444 isl_die(ctx, isl_error_internal,
445 "expecting bounded rational solution",
446 goto error);
447 if (isl_tab_sample_is_integer(tab))
448 break;
449 choice = isl_int_lt(min->el[level], max->el[level]);
450 if (choice) {
451 int g;
452 g = greedy_search(ctx, tab, min, max, level);
453 if (g < 0)
454 goto error;
455 if (g)
456 break;
458 if (!reduced && choice &&
459 ctx->opt->gbr != ISL_GBR_NEVER) {
460 unsigned gbr_only_first;
461 if (ctx->opt->gbr == ISL_GBR_ONCE)
462 ctx->opt->gbr = ISL_GBR_NEVER;
463 tab->n_zero = level;
464 gbr_only_first = ctx->opt->gbr_only_first;
465 ctx->opt->gbr_only_first =
466 ctx->opt->gbr == ISL_GBR_ALWAYS;
467 tab = isl_tab_compute_reduced_basis(tab);
468 ctx->opt->gbr_only_first = gbr_only_first;
469 if (!tab || !tab->basis)
470 goto error;
471 reduced = 1;
472 continue;
474 reduced = 0;
475 snap[level] = isl_tab_snap(tab);
476 } else
477 isl_int_add_ui(min->el[level], min->el[level], 1);
479 if (isl_int_gt(min->el[level], max->el[level])) {
480 level--;
481 init = 0;
482 if (level >= 0)
483 if (isl_tab_rollback(tab, snap[level]) < 0)
484 goto error;
485 continue;
487 isl_int_neg(tab->basis->row[1 + level][0], min->el[level]);
488 if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
489 goto error;
490 isl_int_set_si(tab->basis->row[1 + level][0], 0);
491 if (level + tab->n_unbounded < dim - 1) {
492 ++level;
493 init = 1;
494 continue;
496 break;
499 if (level >= 0) {
500 sample = isl_tab_get_sample_value(tab);
501 if (!sample)
502 goto error;
503 if (tab->n_unbounded && !isl_int_is_one(sample->el[0])) {
504 sample = isl_mat_vec_product(isl_mat_copy(tab->basis),
505 sample);
506 sample = isl_vec_ceil(sample);
507 sample = isl_mat_vec_inverse_product(
508 isl_mat_copy(tab->basis), sample);
510 } else
511 sample = isl_vec_alloc(ctx, 0);
513 ctx->opt->gbr = gbr;
514 isl_vec_free(min);
515 isl_vec_free(max);
516 free(snap);
517 return sample;
518 error:
519 ctx->opt->gbr = gbr;
520 isl_vec_free(min);
521 isl_vec_free(max);
522 free(snap);
523 return NULL;
526 static struct isl_vec *sample_bounded(struct isl_basic_set *bset);
528 /* Compute a sample point of the given basic set, based on the given,
529 * non-trivial factorization.
531 static __isl_give isl_vec *factored_sample(__isl_take isl_basic_set *bset,
532 __isl_take isl_factorizer *f)
534 int i, n;
535 isl_vec *sample = NULL;
536 isl_ctx *ctx;
537 unsigned nparam;
538 unsigned nvar;
540 ctx = isl_basic_set_get_ctx(bset);
541 if (!ctx)
542 goto error;
544 nparam = isl_basic_set_dim(bset, isl_dim_param);
545 nvar = isl_basic_set_dim(bset, isl_dim_set);
547 sample = isl_vec_alloc(ctx, 1 + isl_basic_set_total_dim(bset));
548 if (!sample)
549 goto error;
550 isl_int_set_si(sample->el[0], 1);
552 bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);
554 for (i = 0, n = 0; i < f->n_group; ++i) {
555 isl_basic_set *bset_i;
556 isl_vec *sample_i;
558 bset_i = isl_basic_set_copy(bset);
559 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
560 nparam + n + f->len[i], nvar - n - f->len[i]);
561 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
562 nparam, n);
563 bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
564 n + f->len[i], nvar - n - f->len[i]);
565 bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);
567 sample_i = sample_bounded(bset_i);
568 if (!sample_i)
569 goto error;
570 if (sample_i->size == 0) {
571 isl_basic_set_free(bset);
572 isl_factorizer_free(f);
573 isl_vec_free(sample);
574 return sample_i;
576 isl_seq_cpy(sample->el + 1 + nparam + n,
577 sample_i->el + 1, f->len[i]);
578 isl_vec_free(sample_i);
580 n += f->len[i];
583 f->morph = isl_morph_inverse(f->morph);
584 sample = isl_morph_vec(isl_morph_copy(f->morph), sample);
586 isl_basic_set_free(bset);
587 isl_factorizer_free(f);
588 return sample;
589 error:
590 isl_basic_set_free(bset);
591 isl_factorizer_free(f);
592 isl_vec_free(sample);
593 return NULL;
596 /* Given a basic set that is known to be bounded, find and return
597 * an integer point in the basic set, if there is any.
599 * After handling some trivial cases, we construct a tableau
600 * and then use isl_tab_sample to find a sample, passing it
601 * the identity matrix as initial basis.
603 static struct isl_vec *sample_bounded(struct isl_basic_set *bset)
605 unsigned dim;
606 struct isl_vec *sample;
607 struct isl_tab *tab = NULL;
608 isl_factorizer *f;
610 if (!bset)
611 return NULL;
613 if (isl_basic_set_plain_is_empty(bset))
614 return empty_sample(bset);
616 dim = isl_basic_set_total_dim(bset);
617 if (dim == 0)
618 return zero_sample(bset);
619 if (dim == 1)
620 return interval_sample(bset);
621 if (bset->n_eq > 0)
622 return sample_eq(bset, sample_bounded);
624 f = isl_basic_set_factorizer(bset);
625 if (!f)
626 goto error;
627 if (f->n_group != 0)
628 return factored_sample(bset, f);
629 isl_factorizer_free(f);
631 tab = isl_tab_from_basic_set(bset, 1);
632 if (tab && tab->empty) {
633 isl_tab_free(tab);
634 ISL_F_SET(bset, ISL_BASIC_SET_EMPTY);
635 sample = isl_vec_alloc(isl_basic_set_get_ctx(bset), 0);
636 isl_basic_set_free(bset);
637 return sample;
640 if (!ISL_F_ISSET(bset, ISL_BASIC_SET_NO_IMPLICIT))
641 if (isl_tab_detect_implicit_equalities(tab) < 0)
642 goto error;
644 sample = isl_tab_sample(tab);
645 if (!sample)
646 goto error;
648 if (sample->size > 0) {
649 isl_vec_free(bset->sample);
650 bset->sample = isl_vec_copy(sample);
653 isl_basic_set_free(bset);
654 isl_tab_free(tab);
655 return sample;
656 error:
657 isl_basic_set_free(bset);
658 isl_tab_free(tab);
659 return NULL;
662 /* Given a basic set "bset" and a value "sample" for the first coordinates
663 * of bset, plug in these values and drop the corresponding coordinates.
665 * We do this by computing the preimage of the transformation
667 * [ 1 0 ]
668 * x = [ s 0 ] x'
669 * [ 0 I ]
671 * where [1 s] is the sample value and I is the identity matrix of the
672 * appropriate dimension.
674 static struct isl_basic_set *plug_in(struct isl_basic_set *bset,
675 struct isl_vec *sample)
677 int i;
678 unsigned total;
679 struct isl_mat *T;
681 if (!bset || !sample)
682 goto error;
684 total = isl_basic_set_total_dim(bset);
685 T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1));
686 if (!T)
687 goto error;
689 for (i = 0; i < sample->size; ++i) {
690 isl_int_set(T->row[i][0], sample->el[i]);
691 isl_seq_clr(T->row[i] + 1, T->n_col - 1);
693 for (i = 0; i < T->n_col - 1; ++i) {
694 isl_seq_clr(T->row[sample->size + i], T->n_col);
695 isl_int_set_si(T->row[sample->size + i][1 + i], 1);
697 isl_vec_free(sample);
699 bset = isl_basic_set_preimage(bset, T);
700 return bset;
701 error:
702 isl_basic_set_free(bset);
703 isl_vec_free(sample);
704 return NULL;
707 /* Given a basic set "bset", return any (possibly non-integer) point
708 * in the basic set.
710 static struct isl_vec *rational_sample(struct isl_basic_set *bset)
712 struct isl_tab *tab;
713 struct isl_vec *sample;
715 if (!bset)
716 return NULL;
718 tab = isl_tab_from_basic_set(bset, 0);
719 sample = isl_tab_get_sample_value(tab);
720 isl_tab_free(tab);
722 isl_basic_set_free(bset);
724 return sample;
727 /* Given a linear cone "cone" and a rational point "vec",
728 * construct a polyhedron with shifted copies of the constraints in "cone",
729 * i.e., a polyhedron with "cone" as its recession cone, such that each
730 * point x in this polyhedron is such that the unit box positioned at x
731 * lies entirely inside the affine cone 'vec + cone'.
732 * Any rational point in this polyhedron may therefore be rounded up
733 * to yield an integer point that lies inside said affine cone.
735 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
736 * point "vec" by v/d.
737 * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
738 * by <a_i, x> - b/d >= 0.
739 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
740 * We prefer this polyhedron over the actual affine cone because it doesn't
741 * require a scaling of the constraints.
742 * If each of the vertices of the unit cube positioned at x lies inside
743 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
744 * We therefore impose that x' = x + \sum e_i, for any selection of unit
745 * vectors lies inside the polyhedron, i.e.,
747 * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
749 * The most stringent of these constraints is the one that selects
750 * all negative a_i, so the polyhedron we are looking for has constraints
752 * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
754 * Note that if cone were known to have only non-negative rays
755 * (which can be accomplished by a unimodular transformation),
756 * then we would only have to check the points x' = x + e_i
757 * and we only have to add the smallest negative a_i (if any)
758 * instead of the sum of all negative a_i.
760 static struct isl_basic_set *shift_cone(struct isl_basic_set *cone,
761 struct isl_vec *vec)
763 int i, j, k;
764 unsigned total;
766 struct isl_basic_set *shift = NULL;
768 if (!cone || !vec)
769 goto error;
771 isl_assert(cone->ctx, cone->n_eq == 0, goto error);
773 total = isl_basic_set_total_dim(cone);
775 shift = isl_basic_set_alloc_space(isl_basic_set_get_space(cone),
776 0, 0, cone->n_ineq);
778 for (i = 0; i < cone->n_ineq; ++i) {
779 k = isl_basic_set_alloc_inequality(shift);
780 if (k < 0)
781 goto error;
782 isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total);
783 isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total,
784 &shift->ineq[k][0]);
785 isl_int_cdiv_q(shift->ineq[k][0],
786 shift->ineq[k][0], vec->el[0]);
787 isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]);
788 for (j = 0; j < total; ++j) {
789 if (isl_int_is_nonneg(shift->ineq[k][1 + j]))
790 continue;
791 isl_int_add(shift->ineq[k][0],
792 shift->ineq[k][0], shift->ineq[k][1 + j]);
796 isl_basic_set_free(cone);
797 isl_vec_free(vec);
799 return isl_basic_set_finalize(shift);
800 error:
801 isl_basic_set_free(shift);
802 isl_basic_set_free(cone);
803 isl_vec_free(vec);
804 return NULL;
807 /* Given a rational point vec in a (transformed) basic set,
808 * such that cone is the recession cone of the original basic set,
809 * "round up" the rational point to an integer point.
811 * We first check if the rational point just happens to be integer.
812 * If not, we transform the cone in the same way as the basic set,
813 * pick a point x in this cone shifted to the rational point such that
814 * the whole unit cube at x is also inside this affine cone.
815 * Then we simply round up the coordinates of x and return the
816 * resulting integer point.
818 static struct isl_vec *round_up_in_cone(struct isl_vec *vec,
819 struct isl_basic_set *cone, struct isl_mat *U)
821 unsigned total;
823 if (!vec || !cone || !U)
824 goto error;
826 isl_assert(vec->ctx, vec->size != 0, goto error);
827 if (isl_int_is_one(vec->el[0])) {
828 isl_mat_free(U);
829 isl_basic_set_free(cone);
830 return vec;
833 total = isl_basic_set_total_dim(cone);
834 cone = isl_basic_set_preimage(cone, U);
835 cone = isl_basic_set_remove_dims(cone, isl_dim_set,
836 0, total - (vec->size - 1));
838 cone = shift_cone(cone, vec);
840 vec = rational_sample(cone);
841 vec = isl_vec_ceil(vec);
842 return vec;
843 error:
844 isl_mat_free(U);
845 isl_vec_free(vec);
846 isl_basic_set_free(cone);
847 return NULL;
850 /* Concatenate two integer vectors, i.e., two vectors with denominator
851 * (stored in element 0) equal to 1.
853 static struct isl_vec *vec_concat(struct isl_vec *vec1, struct isl_vec *vec2)
855 struct isl_vec *vec;
857 if (!vec1 || !vec2)
858 goto error;
859 isl_assert(vec1->ctx, vec1->size > 0, goto error);
860 isl_assert(vec2->ctx, vec2->size > 0, goto error);
861 isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error);
862 isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error);
864 vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1);
865 if (!vec)
866 goto error;
868 isl_seq_cpy(vec->el, vec1->el, vec1->size);
869 isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1);
871 isl_vec_free(vec1);
872 isl_vec_free(vec2);
874 return vec;
875 error:
876 isl_vec_free(vec1);
877 isl_vec_free(vec2);
878 return NULL;
881 /* Give a basic set "bset" with recession cone "cone", compute and
882 * return an integer point in bset, if any.
884 * If the recession cone is full-dimensional, then we know that
885 * bset contains an infinite number of integer points and it is
886 * fairly easy to pick one of them.
887 * If the recession cone is not full-dimensional, then we first
888 * transform bset such that the bounded directions appear as
889 * the first dimensions of the transformed basic set.
890 * We do this by using a unimodular transformation that transforms
891 * the equalities in the recession cone to equalities on the first
892 * dimensions.
894 * The transformed set is then projected onto its bounded dimensions.
895 * Note that to compute this projection, we can simply drop all constraints
896 * involving any of the unbounded dimensions since these constraints
897 * cannot be combined to produce a constraint on the bounded dimensions.
898 * To see this, assume that there is such a combination of constraints
899 * that produces a constraint on the bounded dimensions. This means
900 * that some combination of the unbounded dimensions has both an upper
901 * bound and a lower bound in terms of the bounded dimensions, but then
902 * this combination would be a bounded direction too and would have been
903 * transformed into a bounded dimensions.
905 * We then compute a sample value in the bounded dimensions.
906 * If no such value can be found, then the original set did not contain
907 * any integer points and we are done.
908 * Otherwise, we plug in the value we found in the bounded dimensions,
909 * project out these bounded dimensions and end up with a set with
910 * a full-dimensional recession cone.
911 * A sample point in this set is computed by "rounding up" any
912 * rational point in the set.
914 * The sample points in the bounded and unbounded dimensions are
915 * then combined into a single sample point and transformed back
916 * to the original space.
918 __isl_give isl_vec *isl_basic_set_sample_with_cone(
919 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
921 unsigned total;
922 unsigned cone_dim;
923 struct isl_mat *M, *U;
924 struct isl_vec *sample;
925 struct isl_vec *cone_sample;
926 struct isl_ctx *ctx;
927 struct isl_basic_set *bounded;
929 if (!bset || !cone)
930 goto error;
932 ctx = isl_basic_set_get_ctx(bset);
933 total = isl_basic_set_total_dim(cone);
934 cone_dim = total - cone->n_eq;
936 M = isl_mat_sub_alloc6(ctx, cone->eq, 0, cone->n_eq, 1, total);
937 M = isl_mat_left_hermite(M, 0, &U, NULL);
938 if (!M)
939 goto error;
940 isl_mat_free(M);
942 U = isl_mat_lin_to_aff(U);
943 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
945 bounded = isl_basic_set_copy(bset);
946 bounded = isl_basic_set_drop_constraints_involving(bounded,
947 total - cone_dim, cone_dim);
948 bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim);
949 sample = sample_bounded(bounded);
950 if (!sample || sample->size == 0) {
951 isl_basic_set_free(bset);
952 isl_basic_set_free(cone);
953 isl_mat_free(U);
954 return sample;
956 bset = plug_in(bset, isl_vec_copy(sample));
957 cone_sample = rational_sample(bset);
958 cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U));
959 sample = vec_concat(sample, cone_sample);
960 sample = isl_mat_vec_product(U, sample);
961 return sample;
962 error:
963 isl_basic_set_free(cone);
964 isl_basic_set_free(bset);
965 return NULL;
968 static void vec_sum_of_neg(struct isl_vec *v, isl_int *s)
970 int i;
972 isl_int_set_si(*s, 0);
974 for (i = 0; i < v->size; ++i)
975 if (isl_int_is_neg(v->el[i]))
976 isl_int_add(*s, *s, v->el[i]);
979 /* Given a tableau "tab", a tableau "tab_cone" that corresponds
980 * to the recession cone and the inverse of a new basis U = inv(B),
981 * with the unbounded directions in B last,
982 * add constraints to "tab" that ensure any rational value
983 * in the unbounded directions can be rounded up to an integer value.
985 * The new basis is given by x' = B x, i.e., x = U x'.
986 * For any rational value of the last tab->n_unbounded coordinates
987 * in the update tableau, the value that is obtained by rounding
988 * up this value should be contained in the original tableau.
989 * For any constraint "a x + c >= 0", we therefore need to add
990 * a constraint "a x + c + s >= 0", with s the sum of all negative
991 * entries in the last elements of "a U".
993 * Since we are not interested in the first entries of any of the "a U",
994 * we first drop the columns of U that correpond to bounded directions.
996 static int tab_shift_cone(struct isl_tab *tab,
997 struct isl_tab *tab_cone, struct isl_mat *U)
999 int i;
1000 isl_int v;
1001 struct isl_basic_set *bset = NULL;
1003 if (tab && tab->n_unbounded == 0) {
1004 isl_mat_free(U);
1005 return 0;
1007 isl_int_init(v);
1008 if (!tab || !tab_cone || !U)
1009 goto error;
1010 bset = isl_tab_peek_bset(tab_cone);
1011 U = isl_mat_drop_cols(U, 0, tab->n_var - tab->n_unbounded);
1012 for (i = 0; i < bset->n_ineq; ++i) {
1013 int ok;
1014 struct isl_vec *row = NULL;
1015 if (isl_tab_is_equality(tab_cone, tab_cone->n_eq + i))
1016 continue;
1017 row = isl_vec_alloc(bset->ctx, tab_cone->n_var);
1018 if (!row)
1019 goto error;
1020 isl_seq_cpy(row->el, bset->ineq[i] + 1, tab_cone->n_var);
1021 row = isl_vec_mat_product(row, isl_mat_copy(U));
1022 if (!row)
1023 goto error;
1024 vec_sum_of_neg(row, &v);
1025 isl_vec_free(row);
1026 if (isl_int_is_zero(v))
1027 continue;
1028 if (isl_tab_extend_cons(tab, 1) < 0)
1029 goto error;
1030 isl_int_add(bset->ineq[i][0], bset->ineq[i][0], v);
1031 ok = isl_tab_add_ineq(tab, bset->ineq[i]) >= 0;
1032 isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], v);
1033 if (!ok)
1034 goto error;
1037 isl_mat_free(U);
1038 isl_int_clear(v);
1039 return 0;
1040 error:
1041 isl_mat_free(U);
1042 isl_int_clear(v);
1043 return -1;
1046 /* Compute and return an initial basis for the possibly
1047 * unbounded tableau "tab". "tab_cone" is a tableau
1048 * for the corresponding recession cone.
1049 * Additionally, add constraints to "tab" that ensure
1050 * that any rational value for the unbounded directions
1051 * can be rounded up to an integer value.
1053 * If the tableau is bounded, i.e., if the recession cone
1054 * is zero-dimensional, then we just use inital_basis.
1055 * Otherwise, we construct a basis whose first directions
1056 * correspond to equalities, followed by bounded directions,
1057 * i.e., equalities in the recession cone.
1058 * The remaining directions are then unbounded.
1060 int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab,
1061 struct isl_tab *tab_cone)
1063 struct isl_mat *eq;
1064 struct isl_mat *cone_eq;
1065 struct isl_mat *U, *Q;
1067 if (!tab || !tab_cone)
1068 return -1;
1070 if (tab_cone->n_col == tab_cone->n_dead) {
1071 tab->basis = initial_basis(tab);
1072 return tab->basis ? 0 : -1;
1075 eq = tab_equalities(tab);
1076 if (!eq)
1077 return -1;
1078 tab->n_zero = eq->n_row;
1079 cone_eq = tab_equalities(tab_cone);
1080 eq = isl_mat_concat(eq, cone_eq);
1081 if (!eq)
1082 return -1;
1083 tab->n_unbounded = tab->n_var - (eq->n_row - tab->n_zero);
1084 eq = isl_mat_left_hermite(eq, 0, &U, &Q);
1085 if (!eq)
1086 return -1;
1087 isl_mat_free(eq);
1088 tab->basis = isl_mat_lin_to_aff(Q);
1089 if (tab_shift_cone(tab, tab_cone, U) < 0)
1090 return -1;
1091 if (!tab->basis)
1092 return -1;
1093 return 0;
1096 /* Compute and return a sample point in bset using generalized basis
1097 * reduction. We first check if the input set has a non-trivial
1098 * recession cone. If so, we perform some extra preprocessing in
1099 * sample_with_cone. Otherwise, we directly perform generalized basis
1100 * reduction.
1102 static struct isl_vec *gbr_sample(struct isl_basic_set *bset)
1104 unsigned dim;
1105 struct isl_basic_set *cone;
1107 dim = isl_basic_set_total_dim(bset);
1109 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
1110 if (!cone)
1111 goto error;
1113 if (cone->n_eq < dim)
1114 return isl_basic_set_sample_with_cone(bset, cone);
1116 isl_basic_set_free(cone);
1117 return sample_bounded(bset);
1118 error:
1119 isl_basic_set_free(bset);
1120 return NULL;
1123 static struct isl_vec *basic_set_sample(struct isl_basic_set *bset, int bounded)
1125 struct isl_ctx *ctx;
1126 unsigned dim;
1127 if (!bset)
1128 return NULL;
1130 ctx = bset->ctx;
1131 if (isl_basic_set_plain_is_empty(bset))
1132 return empty_sample(bset);
1134 dim = isl_basic_set_n_dim(bset);
1135 isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
1136 isl_assert(ctx, bset->n_div == 0, goto error);
1138 if (bset->sample && bset->sample->size == 1 + dim) {
1139 int contains = isl_basic_set_contains(bset, bset->sample);
1140 if (contains < 0)
1141 goto error;
1142 if (contains) {
1143 struct isl_vec *sample = isl_vec_copy(bset->sample);
1144 isl_basic_set_free(bset);
1145 return sample;
1148 isl_vec_free(bset->sample);
1149 bset->sample = NULL;
1151 if (bset->n_eq > 0)
1152 return sample_eq(bset, bounded ? isl_basic_set_sample_bounded
1153 : isl_basic_set_sample_vec);
1154 if (dim == 0)
1155 return zero_sample(bset);
1156 if (dim == 1)
1157 return interval_sample(bset);
1159 return bounded ? sample_bounded(bset) : gbr_sample(bset);
1160 error:
1161 isl_basic_set_free(bset);
1162 return NULL;
1165 __isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset)
1167 return basic_set_sample(bset, 0);
1170 /* Compute an integer sample in "bset", where the caller guarantees
1171 * that "bset" is bounded.
1173 struct isl_vec *isl_basic_set_sample_bounded(struct isl_basic_set *bset)
1175 return basic_set_sample(bset, 1);
1178 __isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec)
1180 int i;
1181 int k;
1182 struct isl_basic_set *bset = NULL;
1183 struct isl_ctx *ctx;
1184 unsigned dim;
1186 if (!vec)
1187 return NULL;
1188 ctx = vec->ctx;
1189 isl_assert(ctx, vec->size != 0, goto error);
1191 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
1192 if (!bset)
1193 goto error;
1194 dim = isl_basic_set_n_dim(bset);
1195 for (i = dim - 1; i >= 0; --i) {
1196 k = isl_basic_set_alloc_equality(bset);
1197 if (k < 0)
1198 goto error;
1199 isl_seq_clr(bset->eq[k], 1 + dim);
1200 isl_int_neg(bset->eq[k][0], vec->el[1 + i]);
1201 isl_int_set(bset->eq[k][1 + i], vec->el[0]);
1203 bset->sample = vec;
1205 return bset;
1206 error:
1207 isl_basic_set_free(bset);
1208 isl_vec_free(vec);
1209 return NULL;
1212 __isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap)
1214 struct isl_basic_set *bset;
1215 struct isl_vec *sample_vec;
1217 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
1218 sample_vec = isl_basic_set_sample_vec(bset);
1219 if (!sample_vec)
1220 goto error;
1221 if (sample_vec->size == 0) {
1222 isl_vec_free(sample_vec);
1223 return isl_basic_map_set_to_empty(bmap);
1225 isl_vec_free(bmap->sample);
1226 bmap->sample = isl_vec_copy(sample_vec);
1227 bset = isl_basic_set_from_vec(sample_vec);
1228 return isl_basic_map_overlying_set(bset, bmap);
1229 error:
1230 isl_basic_map_free(bmap);
1231 return NULL;
1234 __isl_give isl_basic_set *isl_basic_set_sample(__isl_take isl_basic_set *bset)
1236 return isl_basic_map_sample(bset);
1239 __isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map)
1241 int i;
1242 isl_basic_map *sample = NULL;
1244 if (!map)
1245 goto error;
1247 for (i = 0; i < map->n; ++i) {
1248 sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i]));
1249 if (!sample)
1250 goto error;
1251 if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY))
1252 break;
1253 isl_basic_map_free(sample);
1255 if (i == map->n)
1256 sample = isl_basic_map_empty(isl_map_get_space(map));
1257 isl_map_free(map);
1258 return sample;
1259 error:
1260 isl_map_free(map);
1261 return NULL;
1264 __isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set)
1266 return bset_from_bmap(isl_map_sample((isl_map *) set));
1269 __isl_give isl_point *isl_basic_set_sample_point(__isl_take isl_basic_set *bset)
1271 isl_vec *vec;
1272 isl_space *dim;
1274 dim = isl_basic_set_get_space(bset);
1275 bset = isl_basic_set_underlying_set(bset);
1276 vec = isl_basic_set_sample_vec(bset);
1278 return isl_point_alloc(dim, vec);
1281 __isl_give isl_point *isl_set_sample_point(__isl_take isl_set *set)
1283 int i;
1284 isl_point *pnt;
1286 if (!set)
1287 return NULL;
1289 for (i = 0; i < set->n; ++i) {
1290 pnt = isl_basic_set_sample_point(isl_basic_set_copy(set->p[i]));
1291 if (!pnt)
1292 goto error;
1293 if (!isl_point_is_void(pnt))
1294 break;
1295 isl_point_free(pnt);
1297 if (i == set->n)
1298 pnt = isl_point_void(isl_set_get_space(set));
1300 isl_set_free(set);
1301 return pnt;
1302 error:
1303 isl_set_free(set);
1304 return NULL;