2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
12 #include "isl_sample.h"
16 #include "isl_equalities.h"
18 #include "isl_basis_reduction.h"
19 #include <isl_factorization.h>
20 #include <isl_point_private.h>
21 #include <isl_options_private.h>
22 #include <isl_vec_private.h>
24 #include <bset_from_bmap.c>
26 static struct isl_vec
*empty_sample(struct isl_basic_set
*bset
)
30 vec
= isl_vec_alloc(bset
->ctx
, 0);
31 isl_basic_set_free(bset
);
35 /* Construct a zero sample of the same dimension as bset.
36 * As a special case, if bset is zero-dimensional, this
37 * function creates a zero-dimensional sample point.
39 static struct isl_vec
*zero_sample(struct isl_basic_set
*bset
)
42 struct isl_vec
*sample
;
44 dim
= isl_basic_set_total_dim(bset
);
45 sample
= isl_vec_alloc(bset
->ctx
, 1 + dim
);
47 isl_int_set_si(sample
->el
[0], 1);
48 isl_seq_clr(sample
->el
+ 1, dim
);
50 isl_basic_set_free(bset
);
54 static struct isl_vec
*interval_sample(struct isl_basic_set
*bset
)
58 struct isl_vec
*sample
;
60 bset
= isl_basic_set_simplify(bset
);
63 if (isl_basic_set_plain_is_empty(bset
))
64 return empty_sample(bset
);
65 if (bset
->n_eq
== 0 && bset
->n_ineq
== 0)
66 return zero_sample(bset
);
68 sample
= isl_vec_alloc(bset
->ctx
, 2);
73 isl_int_set_si(sample
->block
.data
[0], 1);
76 isl_assert(bset
->ctx
, bset
->n_eq
== 1, goto error
);
77 isl_assert(bset
->ctx
, bset
->n_ineq
== 0, goto error
);
78 if (isl_int_is_one(bset
->eq
[0][1]))
79 isl_int_neg(sample
->el
[1], bset
->eq
[0][0]);
81 isl_assert(bset
->ctx
, isl_int_is_negone(bset
->eq
[0][1]),
83 isl_int_set(sample
->el
[1], bset
->eq
[0][0]);
85 isl_basic_set_free(bset
);
90 if (isl_int_is_one(bset
->ineq
[0][1]))
91 isl_int_neg(sample
->block
.data
[1], bset
->ineq
[0][0]);
93 isl_int_set(sample
->block
.data
[1], bset
->ineq
[0][0]);
94 for (i
= 1; i
< bset
->n_ineq
; ++i
) {
95 isl_seq_inner_product(sample
->block
.data
,
96 bset
->ineq
[i
], 2, &t
);
97 if (isl_int_is_neg(t
))
101 if (i
< bset
->n_ineq
) {
102 isl_vec_free(sample
);
103 return empty_sample(bset
);
106 isl_basic_set_free(bset
);
109 isl_basic_set_free(bset
);
110 isl_vec_free(sample
);
114 /* Find a sample integer point, if any, in bset, which is known
115 * to have equalities. If bset contains no integer points, then
116 * return a zero-length vector.
117 * We simply remove the known equalities, compute a sample
118 * in the resulting bset, using the specified recurse function,
119 * and then transform the sample back to the original space.
121 static struct isl_vec
*sample_eq(struct isl_basic_set
*bset
,
122 struct isl_vec
*(*recurse
)(struct isl_basic_set
*))
125 struct isl_vec
*sample
;
130 bset
= isl_basic_set_remove_equalities(bset
, &T
, NULL
);
131 sample
= recurse(bset
);
132 if (!sample
|| sample
->size
== 0)
135 sample
= isl_mat_vec_product(T
, sample
);
139 /* Return a matrix containing the equalities of the tableau
140 * in constraint form. The tableau is assumed to have
141 * an associated bset that has been kept up-to-date.
143 static struct isl_mat
*tab_equalities(struct isl_tab
*tab
)
148 struct isl_basic_set
*bset
;
153 bset
= isl_tab_peek_bset(tab
);
154 isl_assert(tab
->mat
->ctx
, bset
, return NULL
);
156 n_eq
= tab
->n_var
- tab
->n_col
+ tab
->n_dead
;
157 if (tab
->empty
|| n_eq
== 0)
158 return isl_mat_alloc(tab
->mat
->ctx
, 0, tab
->n_var
);
159 if (n_eq
== tab
->n_var
)
160 return isl_mat_identity(tab
->mat
->ctx
, tab
->n_var
);
162 eq
= isl_mat_alloc(tab
->mat
->ctx
, n_eq
, tab
->n_var
);
165 for (i
= 0, j
= 0; i
< tab
->n_con
; ++i
) {
166 if (tab
->con
[i
].is_row
)
168 if (tab
->con
[i
].index
>= 0 && tab
->con
[i
].index
>= tab
->n_dead
)
171 isl_seq_cpy(eq
->row
[j
], bset
->eq
[i
] + 1, tab
->n_var
);
173 isl_seq_cpy(eq
->row
[j
],
174 bset
->ineq
[i
- bset
->n_eq
] + 1, tab
->n_var
);
177 isl_assert(bset
->ctx
, j
== n_eq
, goto error
);
184 /* Compute and return an initial basis for the bounded tableau "tab".
186 * If the tableau is either full-dimensional or zero-dimensional,
187 * the we simply return an identity matrix.
188 * Otherwise, we construct a basis whose first directions correspond
191 static struct isl_mat
*initial_basis(struct isl_tab
*tab
)
197 tab
->n_unbounded
= 0;
198 tab
->n_zero
= n_eq
= tab
->n_var
- tab
->n_col
+ tab
->n_dead
;
199 if (tab
->empty
|| n_eq
== 0 || n_eq
== tab
->n_var
)
200 return isl_mat_identity(tab
->mat
->ctx
, 1 + tab
->n_var
);
202 eq
= tab_equalities(tab
);
203 eq
= isl_mat_left_hermite(eq
, 0, NULL
, &Q
);
208 Q
= isl_mat_lin_to_aff(Q
);
212 /* Compute the minimum of the current ("level") basis row over "tab"
213 * and store the result in position "level" of "min".
215 * This function assumes that at least one more row and at least
216 * one more element in the constraint array are available in the tableau.
218 static enum isl_lp_result
compute_min(isl_ctx
*ctx
, struct isl_tab
*tab
,
219 __isl_keep isl_vec
*min
, int level
)
221 return isl_tab_min(tab
, tab
->basis
->row
[1 + level
],
222 ctx
->one
, &min
->el
[level
], NULL
, 0);
225 /* Compute the maximum of the current ("level") basis row over "tab"
226 * and store the result in position "level" of "max".
228 * This function assumes that at least one more row and at least
229 * one more element in the constraint array are available in the tableau.
231 static enum isl_lp_result
compute_max(isl_ctx
*ctx
, struct isl_tab
*tab
,
232 __isl_keep isl_vec
*max
, int level
)
234 enum isl_lp_result res
;
235 unsigned dim
= tab
->n_var
;
237 isl_seq_neg(tab
->basis
->row
[1 + level
] + 1,
238 tab
->basis
->row
[1 + level
] + 1, dim
);
239 res
= isl_tab_min(tab
, tab
->basis
->row
[1 + level
],
240 ctx
->one
, &max
->el
[level
], NULL
, 0);
241 isl_seq_neg(tab
->basis
->row
[1 + level
] + 1,
242 tab
->basis
->row
[1 + level
] + 1, dim
);
243 isl_int_neg(max
->el
[level
], max
->el
[level
]);
248 /* Perform a greedy search for an integer point in the set represented
249 * by "tab", given that the minimal rational value (rounded up to the
250 * nearest integer) at "level" is smaller than the maximal rational
251 * value (rounded down to the nearest integer).
253 * Return 1 if we have found an integer point (if tab->n_unbounded > 0
254 * then we may have only found integer values for the bounded dimensions
255 * and it is the responsibility of the caller to extend this solution
256 * to the unbounded dimensions).
257 * Return 0 if greedy search did not result in a solution.
258 * Return -1 if some error occurred.
260 * We assign a value half-way between the minimum and the maximum
261 * to the current dimension and check if the minimal value of the
262 * next dimension is still smaller than (or equal) to the maximal value.
263 * We continue this process until either
264 * - the minimal value (rounded up) is greater than the maximal value
265 * (rounded down). In this case, greedy search has failed.
266 * - we have exhausted all bounded dimensions, meaning that we have
268 * - the sample value of the tableau is integral.
269 * - some error has occurred.
271 static int greedy_search(isl_ctx
*ctx
, struct isl_tab
*tab
,
272 __isl_keep isl_vec
*min
, __isl_keep isl_vec
*max
, int level
)
274 struct isl_tab_undo
*snap
;
275 enum isl_lp_result res
;
277 snap
= isl_tab_snap(tab
);
280 isl_int_add(tab
->basis
->row
[1 + level
][0],
281 min
->el
[level
], max
->el
[level
]);
282 isl_int_fdiv_q_ui(tab
->basis
->row
[1 + level
][0],
283 tab
->basis
->row
[1 + level
][0], 2);
284 isl_int_neg(tab
->basis
->row
[1 + level
][0],
285 tab
->basis
->row
[1 + level
][0]);
286 if (isl_tab_add_valid_eq(tab
, tab
->basis
->row
[1 + level
]) < 0)
288 isl_int_set_si(tab
->basis
->row
[1 + level
][0], 0);
290 if (++level
>= tab
->n_var
- tab
->n_unbounded
)
292 if (isl_tab_sample_is_integer(tab
))
295 res
= compute_min(ctx
, tab
, min
, level
);
296 if (res
== isl_lp_error
)
298 if (res
!= isl_lp_ok
)
299 isl_die(ctx
, isl_error_internal
,
300 "expecting bounded rational solution",
302 res
= compute_max(ctx
, tab
, max
, level
);
303 if (res
== isl_lp_error
)
305 if (res
!= isl_lp_ok
)
306 isl_die(ctx
, isl_error_internal
,
307 "expecting bounded rational solution",
309 } while (isl_int_le(min
->el
[level
], max
->el
[level
]));
311 if (isl_tab_rollback(tab
, snap
) < 0)
317 /* Given a tableau representing a set, find and return
318 * an integer point in the set, if there is any.
320 * We perform a depth first search
321 * for an integer point, by scanning all possible values in the range
322 * attained by a basis vector, where an initial basis may have been set
323 * by the calling function. Otherwise an initial basis that exploits
324 * the equalities in the tableau is created.
325 * tab->n_zero is currently ignored and is clobbered by this function.
327 * The tableau is allowed to have unbounded direction, but then
328 * the calling function needs to set an initial basis, with the
329 * unbounded directions last and with tab->n_unbounded set
330 * to the number of unbounded directions.
331 * Furthermore, the calling functions needs to add shifted copies
332 * of all constraints involving unbounded directions to ensure
333 * that any feasible rational value in these directions can be rounded
334 * up to yield a feasible integer value.
335 * In particular, let B define the given basis x' = B x
336 * and let T be the inverse of B, i.e., X = T x'.
337 * Let a x + c >= 0 be a constraint of the set represented by the tableau,
338 * or a T x' + c >= 0 in terms of the given basis. Assume that
339 * the bounded directions have an integer value, then we can safely
340 * round up the values for the unbounded directions if we make sure
341 * that x' not only satisfies the original constraint, but also
342 * the constraint "a T x' + c + s >= 0" with s the sum of all
343 * negative values in the last n_unbounded entries of "a T".
344 * The calling function therefore needs to add the constraint
345 * a x + c + s >= 0. The current function then scans the first
346 * directions for an integer value and once those have been found,
347 * it can compute "T ceil(B x)" to yield an integer point in the set.
348 * Note that during the search, the first rows of B may be changed
349 * by a basis reduction, but the last n_unbounded rows of B remain
350 * unaltered and are also not mixed into the first rows.
352 * The search is implemented iteratively. "level" identifies the current
353 * basis vector. "init" is true if we want the first value at the current
354 * level and false if we want the next value.
356 * At the start of each level, we first check if we can find a solution
357 * using greedy search. If not, we continue with the exhaustive search.
359 * The initial basis is the identity matrix. If the range in some direction
360 * contains more than one integer value, we perform basis reduction based
361 * on the value of ctx->opt->gbr
362 * - ISL_GBR_NEVER: never perform basis reduction
363 * - ISL_GBR_ONCE: only perform basis reduction the first
364 * time such a range is encountered
365 * - ISL_GBR_ALWAYS: always perform basis reduction when
366 * such a range is encountered
368 * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
369 * reduction computation to return early. That is, as soon as it
370 * finds a reasonable first direction.
372 struct isl_vec
*isl_tab_sample(struct isl_tab
*tab
)
377 struct isl_vec
*sample
;
380 enum isl_lp_result res
;
384 struct isl_tab_undo
**snap
;
389 return isl_vec_alloc(tab
->mat
->ctx
, 0);
392 tab
->basis
= initial_basis(tab
);
395 isl_assert(tab
->mat
->ctx
, tab
->basis
->n_row
== tab
->n_var
+ 1,
397 isl_assert(tab
->mat
->ctx
, tab
->basis
->n_col
== tab
->n_var
+ 1,
404 if (tab
->n_unbounded
== tab
->n_var
) {
405 sample
= isl_tab_get_sample_value(tab
);
406 sample
= isl_mat_vec_product(isl_mat_copy(tab
->basis
), sample
);
407 sample
= isl_vec_ceil(sample
);
408 sample
= isl_mat_vec_inverse_product(isl_mat_copy(tab
->basis
),
413 if (isl_tab_extend_cons(tab
, dim
+ 1) < 0)
416 min
= isl_vec_alloc(ctx
, dim
);
417 max
= isl_vec_alloc(ctx
, dim
);
418 snap
= isl_alloc_array(ctx
, struct isl_tab_undo
*, dim
);
420 if (!min
|| !max
|| !snap
)
431 res
= compute_min(ctx
, tab
, min
, level
);
432 if (res
== isl_lp_error
)
434 if (res
!= isl_lp_ok
)
435 isl_die(ctx
, isl_error_internal
,
436 "expecting bounded rational solution",
438 if (isl_tab_sample_is_integer(tab
))
440 res
= compute_max(ctx
, tab
, max
, level
);
441 if (res
== isl_lp_error
)
443 if (res
!= isl_lp_ok
)
444 isl_die(ctx
, isl_error_internal
,
445 "expecting bounded rational solution",
447 if (isl_tab_sample_is_integer(tab
))
449 choice
= isl_int_lt(min
->el
[level
], max
->el
[level
]);
452 g
= greedy_search(ctx
, tab
, min
, max
, level
);
458 if (!reduced
&& choice
&&
459 ctx
->opt
->gbr
!= ISL_GBR_NEVER
) {
460 unsigned gbr_only_first
;
461 if (ctx
->opt
->gbr
== ISL_GBR_ONCE
)
462 ctx
->opt
->gbr
= ISL_GBR_NEVER
;
464 gbr_only_first
= ctx
->opt
->gbr_only_first
;
465 ctx
->opt
->gbr_only_first
=
466 ctx
->opt
->gbr
== ISL_GBR_ALWAYS
;
467 tab
= isl_tab_compute_reduced_basis(tab
);
468 ctx
->opt
->gbr_only_first
= gbr_only_first
;
469 if (!tab
|| !tab
->basis
)
475 snap
[level
] = isl_tab_snap(tab
);
477 isl_int_add_ui(min
->el
[level
], min
->el
[level
], 1);
479 if (isl_int_gt(min
->el
[level
], max
->el
[level
])) {
483 if (isl_tab_rollback(tab
, snap
[level
]) < 0)
487 isl_int_neg(tab
->basis
->row
[1 + level
][0], min
->el
[level
]);
488 if (isl_tab_add_valid_eq(tab
, tab
->basis
->row
[1 + level
]) < 0)
490 isl_int_set_si(tab
->basis
->row
[1 + level
][0], 0);
491 if (level
+ tab
->n_unbounded
< dim
- 1) {
500 sample
= isl_tab_get_sample_value(tab
);
503 if (tab
->n_unbounded
&& !isl_int_is_one(sample
->el
[0])) {
504 sample
= isl_mat_vec_product(isl_mat_copy(tab
->basis
),
506 sample
= isl_vec_ceil(sample
);
507 sample
= isl_mat_vec_inverse_product(
508 isl_mat_copy(tab
->basis
), sample
);
511 sample
= isl_vec_alloc(ctx
, 0);
526 static struct isl_vec
*sample_bounded(struct isl_basic_set
*bset
);
528 /* Compute a sample point of the given basic set, based on the given,
529 * non-trivial factorization.
531 static __isl_give isl_vec
*factored_sample(__isl_take isl_basic_set
*bset
,
532 __isl_take isl_factorizer
*f
)
535 isl_vec
*sample
= NULL
;
540 ctx
= isl_basic_set_get_ctx(bset
);
544 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
545 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
547 sample
= isl_vec_alloc(ctx
, 1 + isl_basic_set_total_dim(bset
));
550 isl_int_set_si(sample
->el
[0], 1);
552 bset
= isl_morph_basic_set(isl_morph_copy(f
->morph
), bset
);
554 for (i
= 0, n
= 0; i
< f
->n_group
; ++i
) {
555 isl_basic_set
*bset_i
;
558 bset_i
= isl_basic_set_copy(bset
);
559 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
560 nparam
+ n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
561 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
563 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
,
564 n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
565 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
, 0, n
);
567 sample_i
= sample_bounded(bset_i
);
570 if (sample_i
->size
== 0) {
571 isl_basic_set_free(bset
);
572 isl_factorizer_free(f
);
573 isl_vec_free(sample
);
576 isl_seq_cpy(sample
->el
+ 1 + nparam
+ n
,
577 sample_i
->el
+ 1, f
->len
[i
]);
578 isl_vec_free(sample_i
);
583 f
->morph
= isl_morph_inverse(f
->morph
);
584 sample
= isl_morph_vec(isl_morph_copy(f
->morph
), sample
);
586 isl_basic_set_free(bset
);
587 isl_factorizer_free(f
);
590 isl_basic_set_free(bset
);
591 isl_factorizer_free(f
);
592 isl_vec_free(sample
);
596 /* Given a basic set that is known to be bounded, find and return
597 * an integer point in the basic set, if there is any.
599 * After handling some trivial cases, we construct a tableau
600 * and then use isl_tab_sample to find a sample, passing it
601 * the identity matrix as initial basis.
603 static struct isl_vec
*sample_bounded(struct isl_basic_set
*bset
)
606 struct isl_vec
*sample
;
607 struct isl_tab
*tab
= NULL
;
613 if (isl_basic_set_plain_is_empty(bset
))
614 return empty_sample(bset
);
616 dim
= isl_basic_set_total_dim(bset
);
618 return zero_sample(bset
);
620 return interval_sample(bset
);
622 return sample_eq(bset
, sample_bounded
);
624 f
= isl_basic_set_factorizer(bset
);
628 return factored_sample(bset
, f
);
629 isl_factorizer_free(f
);
631 tab
= isl_tab_from_basic_set(bset
, 1);
632 if (tab
&& tab
->empty
) {
634 ISL_F_SET(bset
, ISL_BASIC_SET_EMPTY
);
635 sample
= isl_vec_alloc(isl_basic_set_get_ctx(bset
), 0);
636 isl_basic_set_free(bset
);
640 if (!ISL_F_ISSET(bset
, ISL_BASIC_SET_NO_IMPLICIT
))
641 if (isl_tab_detect_implicit_equalities(tab
) < 0)
644 sample
= isl_tab_sample(tab
);
648 if (sample
->size
> 0) {
649 isl_vec_free(bset
->sample
);
650 bset
->sample
= isl_vec_copy(sample
);
653 isl_basic_set_free(bset
);
657 isl_basic_set_free(bset
);
662 /* Given a basic set "bset" and a value "sample" for the first coordinates
663 * of bset, plug in these values and drop the corresponding coordinates.
665 * We do this by computing the preimage of the transformation
671 * where [1 s] is the sample value and I is the identity matrix of the
672 * appropriate dimension.
674 static struct isl_basic_set
*plug_in(struct isl_basic_set
*bset
,
675 struct isl_vec
*sample
)
681 if (!bset
|| !sample
)
684 total
= isl_basic_set_total_dim(bset
);
685 T
= isl_mat_alloc(bset
->ctx
, 1 + total
, 1 + total
- (sample
->size
- 1));
689 for (i
= 0; i
< sample
->size
; ++i
) {
690 isl_int_set(T
->row
[i
][0], sample
->el
[i
]);
691 isl_seq_clr(T
->row
[i
] + 1, T
->n_col
- 1);
693 for (i
= 0; i
< T
->n_col
- 1; ++i
) {
694 isl_seq_clr(T
->row
[sample
->size
+ i
], T
->n_col
);
695 isl_int_set_si(T
->row
[sample
->size
+ i
][1 + i
], 1);
697 isl_vec_free(sample
);
699 bset
= isl_basic_set_preimage(bset
, T
);
702 isl_basic_set_free(bset
);
703 isl_vec_free(sample
);
707 /* Given a basic set "bset", return any (possibly non-integer) point
710 static struct isl_vec
*rational_sample(struct isl_basic_set
*bset
)
713 struct isl_vec
*sample
;
718 tab
= isl_tab_from_basic_set(bset
, 0);
719 sample
= isl_tab_get_sample_value(tab
);
722 isl_basic_set_free(bset
);
727 /* Given a linear cone "cone" and a rational point "vec",
728 * construct a polyhedron with shifted copies of the constraints in "cone",
729 * i.e., a polyhedron with "cone" as its recession cone, such that each
730 * point x in this polyhedron is such that the unit box positioned at x
731 * lies entirely inside the affine cone 'vec + cone'.
732 * Any rational point in this polyhedron may therefore be rounded up
733 * to yield an integer point that lies inside said affine cone.
735 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
736 * point "vec" by v/d.
737 * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
738 * by <a_i, x> - b/d >= 0.
739 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
740 * We prefer this polyhedron over the actual affine cone because it doesn't
741 * require a scaling of the constraints.
742 * If each of the vertices of the unit cube positioned at x lies inside
743 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
744 * We therefore impose that x' = x + \sum e_i, for any selection of unit
745 * vectors lies inside the polyhedron, i.e.,
747 * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
749 * The most stringent of these constraints is the one that selects
750 * all negative a_i, so the polyhedron we are looking for has constraints
752 * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
754 * Note that if cone were known to have only non-negative rays
755 * (which can be accomplished by a unimodular transformation),
756 * then we would only have to check the points x' = x + e_i
757 * and we only have to add the smallest negative a_i (if any)
758 * instead of the sum of all negative a_i.
760 static struct isl_basic_set
*shift_cone(struct isl_basic_set
*cone
,
766 struct isl_basic_set
*shift
= NULL
;
771 isl_assert(cone
->ctx
, cone
->n_eq
== 0, goto error
);
773 total
= isl_basic_set_total_dim(cone
);
775 shift
= isl_basic_set_alloc_space(isl_basic_set_get_space(cone
),
778 for (i
= 0; i
< cone
->n_ineq
; ++i
) {
779 k
= isl_basic_set_alloc_inequality(shift
);
782 isl_seq_cpy(shift
->ineq
[k
] + 1, cone
->ineq
[i
] + 1, total
);
783 isl_seq_inner_product(shift
->ineq
[k
] + 1, vec
->el
+ 1, total
,
785 isl_int_cdiv_q(shift
->ineq
[k
][0],
786 shift
->ineq
[k
][0], vec
->el
[0]);
787 isl_int_neg(shift
->ineq
[k
][0], shift
->ineq
[k
][0]);
788 for (j
= 0; j
< total
; ++j
) {
789 if (isl_int_is_nonneg(shift
->ineq
[k
][1 + j
]))
791 isl_int_add(shift
->ineq
[k
][0],
792 shift
->ineq
[k
][0], shift
->ineq
[k
][1 + j
]);
796 isl_basic_set_free(cone
);
799 return isl_basic_set_finalize(shift
);
801 isl_basic_set_free(shift
);
802 isl_basic_set_free(cone
);
807 /* Given a rational point vec in a (transformed) basic set,
808 * such that cone is the recession cone of the original basic set,
809 * "round up" the rational point to an integer point.
811 * We first check if the rational point just happens to be integer.
812 * If not, we transform the cone in the same way as the basic set,
813 * pick a point x in this cone shifted to the rational point such that
814 * the whole unit cube at x is also inside this affine cone.
815 * Then we simply round up the coordinates of x and return the
816 * resulting integer point.
818 static struct isl_vec
*round_up_in_cone(struct isl_vec
*vec
,
819 struct isl_basic_set
*cone
, struct isl_mat
*U
)
823 if (!vec
|| !cone
|| !U
)
826 isl_assert(vec
->ctx
, vec
->size
!= 0, goto error
);
827 if (isl_int_is_one(vec
->el
[0])) {
829 isl_basic_set_free(cone
);
833 total
= isl_basic_set_total_dim(cone
);
834 cone
= isl_basic_set_preimage(cone
, U
);
835 cone
= isl_basic_set_remove_dims(cone
, isl_dim_set
,
836 0, total
- (vec
->size
- 1));
838 cone
= shift_cone(cone
, vec
);
840 vec
= rational_sample(cone
);
841 vec
= isl_vec_ceil(vec
);
846 isl_basic_set_free(cone
);
850 /* Concatenate two integer vectors, i.e., two vectors with denominator
851 * (stored in element 0) equal to 1.
853 static struct isl_vec
*vec_concat(struct isl_vec
*vec1
, struct isl_vec
*vec2
)
859 isl_assert(vec1
->ctx
, vec1
->size
> 0, goto error
);
860 isl_assert(vec2
->ctx
, vec2
->size
> 0, goto error
);
861 isl_assert(vec1
->ctx
, isl_int_is_one(vec1
->el
[0]), goto error
);
862 isl_assert(vec2
->ctx
, isl_int_is_one(vec2
->el
[0]), goto error
);
864 vec
= isl_vec_alloc(vec1
->ctx
, vec1
->size
+ vec2
->size
- 1);
868 isl_seq_cpy(vec
->el
, vec1
->el
, vec1
->size
);
869 isl_seq_cpy(vec
->el
+ vec1
->size
, vec2
->el
+ 1, vec2
->size
- 1);
881 /* Give a basic set "bset" with recession cone "cone", compute and
882 * return an integer point in bset, if any.
884 * If the recession cone is full-dimensional, then we know that
885 * bset contains an infinite number of integer points and it is
886 * fairly easy to pick one of them.
887 * If the recession cone is not full-dimensional, then we first
888 * transform bset such that the bounded directions appear as
889 * the first dimensions of the transformed basic set.
890 * We do this by using a unimodular transformation that transforms
891 * the equalities in the recession cone to equalities on the first
894 * The transformed set is then projected onto its bounded dimensions.
895 * Note that to compute this projection, we can simply drop all constraints
896 * involving any of the unbounded dimensions since these constraints
897 * cannot be combined to produce a constraint on the bounded dimensions.
898 * To see this, assume that there is such a combination of constraints
899 * that produces a constraint on the bounded dimensions. This means
900 * that some combination of the unbounded dimensions has both an upper
901 * bound and a lower bound in terms of the bounded dimensions, but then
902 * this combination would be a bounded direction too and would have been
903 * transformed into a bounded dimensions.
905 * We then compute a sample value in the bounded dimensions.
906 * If no such value can be found, then the original set did not contain
907 * any integer points and we are done.
908 * Otherwise, we plug in the value we found in the bounded dimensions,
909 * project out these bounded dimensions and end up with a set with
910 * a full-dimensional recession cone.
911 * A sample point in this set is computed by "rounding up" any
912 * rational point in the set.
914 * The sample points in the bounded and unbounded dimensions are
915 * then combined into a single sample point and transformed back
916 * to the original space.
918 __isl_give isl_vec
*isl_basic_set_sample_with_cone(
919 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*cone
)
923 struct isl_mat
*M
, *U
;
924 struct isl_vec
*sample
;
925 struct isl_vec
*cone_sample
;
927 struct isl_basic_set
*bounded
;
932 ctx
= isl_basic_set_get_ctx(bset
);
933 total
= isl_basic_set_total_dim(cone
);
934 cone_dim
= total
- cone
->n_eq
;
936 M
= isl_mat_sub_alloc6(ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
937 M
= isl_mat_left_hermite(M
, 0, &U
, NULL
);
942 U
= isl_mat_lin_to_aff(U
);
943 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
945 bounded
= isl_basic_set_copy(bset
);
946 bounded
= isl_basic_set_drop_constraints_involving(bounded
,
947 total
- cone_dim
, cone_dim
);
948 bounded
= isl_basic_set_drop_dims(bounded
, total
- cone_dim
, cone_dim
);
949 sample
= sample_bounded(bounded
);
950 if (!sample
|| sample
->size
== 0) {
951 isl_basic_set_free(bset
);
952 isl_basic_set_free(cone
);
956 bset
= plug_in(bset
, isl_vec_copy(sample
));
957 cone_sample
= rational_sample(bset
);
958 cone_sample
= round_up_in_cone(cone_sample
, cone
, isl_mat_copy(U
));
959 sample
= vec_concat(sample
, cone_sample
);
960 sample
= isl_mat_vec_product(U
, sample
);
963 isl_basic_set_free(cone
);
964 isl_basic_set_free(bset
);
968 static void vec_sum_of_neg(struct isl_vec
*v
, isl_int
*s
)
972 isl_int_set_si(*s
, 0);
974 for (i
= 0; i
< v
->size
; ++i
)
975 if (isl_int_is_neg(v
->el
[i
]))
976 isl_int_add(*s
, *s
, v
->el
[i
]);
979 /* Given a tableau "tab", a tableau "tab_cone" that corresponds
980 * to the recession cone and the inverse of a new basis U = inv(B),
981 * with the unbounded directions in B last,
982 * add constraints to "tab" that ensure any rational value
983 * in the unbounded directions can be rounded up to an integer value.
985 * The new basis is given by x' = B x, i.e., x = U x'.
986 * For any rational value of the last tab->n_unbounded coordinates
987 * in the update tableau, the value that is obtained by rounding
988 * up this value should be contained in the original tableau.
989 * For any constraint "a x + c >= 0", we therefore need to add
990 * a constraint "a x + c + s >= 0", with s the sum of all negative
991 * entries in the last elements of "a U".
993 * Since we are not interested in the first entries of any of the "a U",
994 * we first drop the columns of U that correpond to bounded directions.
996 static int tab_shift_cone(struct isl_tab
*tab
,
997 struct isl_tab
*tab_cone
, struct isl_mat
*U
)
1001 struct isl_basic_set
*bset
= NULL
;
1003 if (tab
&& tab
->n_unbounded
== 0) {
1008 if (!tab
|| !tab_cone
|| !U
)
1010 bset
= isl_tab_peek_bset(tab_cone
);
1011 U
= isl_mat_drop_cols(U
, 0, tab
->n_var
- tab
->n_unbounded
);
1012 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1014 struct isl_vec
*row
= NULL
;
1015 if (isl_tab_is_equality(tab_cone
, tab_cone
->n_eq
+ i
))
1017 row
= isl_vec_alloc(bset
->ctx
, tab_cone
->n_var
);
1020 isl_seq_cpy(row
->el
, bset
->ineq
[i
] + 1, tab_cone
->n_var
);
1021 row
= isl_vec_mat_product(row
, isl_mat_copy(U
));
1024 vec_sum_of_neg(row
, &v
);
1026 if (isl_int_is_zero(v
))
1028 if (isl_tab_extend_cons(tab
, 1) < 0)
1030 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0], v
);
1031 ok
= isl_tab_add_ineq(tab
, bset
->ineq
[i
]) >= 0;
1032 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], v
);
1046 /* Compute and return an initial basis for the possibly
1047 * unbounded tableau "tab". "tab_cone" is a tableau
1048 * for the corresponding recession cone.
1049 * Additionally, add constraints to "tab" that ensure
1050 * that any rational value for the unbounded directions
1051 * can be rounded up to an integer value.
1053 * If the tableau is bounded, i.e., if the recession cone
1054 * is zero-dimensional, then we just use inital_basis.
1055 * Otherwise, we construct a basis whose first directions
1056 * correspond to equalities, followed by bounded directions,
1057 * i.e., equalities in the recession cone.
1058 * The remaining directions are then unbounded.
1060 int isl_tab_set_initial_basis_with_cone(struct isl_tab
*tab
,
1061 struct isl_tab
*tab_cone
)
1064 struct isl_mat
*cone_eq
;
1065 struct isl_mat
*U
, *Q
;
1067 if (!tab
|| !tab_cone
)
1070 if (tab_cone
->n_col
== tab_cone
->n_dead
) {
1071 tab
->basis
= initial_basis(tab
);
1072 return tab
->basis
? 0 : -1;
1075 eq
= tab_equalities(tab
);
1078 tab
->n_zero
= eq
->n_row
;
1079 cone_eq
= tab_equalities(tab_cone
);
1080 eq
= isl_mat_concat(eq
, cone_eq
);
1083 tab
->n_unbounded
= tab
->n_var
- (eq
->n_row
- tab
->n_zero
);
1084 eq
= isl_mat_left_hermite(eq
, 0, &U
, &Q
);
1088 tab
->basis
= isl_mat_lin_to_aff(Q
);
1089 if (tab_shift_cone(tab
, tab_cone
, U
) < 0)
1096 /* Compute and return a sample point in bset using generalized basis
1097 * reduction. We first check if the input set has a non-trivial
1098 * recession cone. If so, we perform some extra preprocessing in
1099 * sample_with_cone. Otherwise, we directly perform generalized basis
1102 static struct isl_vec
*gbr_sample(struct isl_basic_set
*bset
)
1105 struct isl_basic_set
*cone
;
1107 dim
= isl_basic_set_total_dim(bset
);
1109 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
1113 if (cone
->n_eq
< dim
)
1114 return isl_basic_set_sample_with_cone(bset
, cone
);
1116 isl_basic_set_free(cone
);
1117 return sample_bounded(bset
);
1119 isl_basic_set_free(bset
);
1123 static struct isl_vec
*basic_set_sample(struct isl_basic_set
*bset
, int bounded
)
1125 struct isl_ctx
*ctx
;
1131 if (isl_basic_set_plain_is_empty(bset
))
1132 return empty_sample(bset
);
1134 dim
= isl_basic_set_n_dim(bset
);
1135 isl_assert(ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
1136 isl_assert(ctx
, bset
->n_div
== 0, goto error
);
1138 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
1139 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
1143 struct isl_vec
*sample
= isl_vec_copy(bset
->sample
);
1144 isl_basic_set_free(bset
);
1148 isl_vec_free(bset
->sample
);
1149 bset
->sample
= NULL
;
1152 return sample_eq(bset
, bounded
? isl_basic_set_sample_bounded
1153 : isl_basic_set_sample_vec
);
1155 return zero_sample(bset
);
1157 return interval_sample(bset
);
1159 return bounded
? sample_bounded(bset
) : gbr_sample(bset
);
1161 isl_basic_set_free(bset
);
1165 __isl_give isl_vec
*isl_basic_set_sample_vec(__isl_take isl_basic_set
*bset
)
1167 return basic_set_sample(bset
, 0);
1170 /* Compute an integer sample in "bset", where the caller guarantees
1171 * that "bset" is bounded.
1173 struct isl_vec
*isl_basic_set_sample_bounded(struct isl_basic_set
*bset
)
1175 return basic_set_sample(bset
, 1);
1178 __isl_give isl_basic_set
*isl_basic_set_from_vec(__isl_take isl_vec
*vec
)
1182 struct isl_basic_set
*bset
= NULL
;
1183 struct isl_ctx
*ctx
;
1189 isl_assert(ctx
, vec
->size
!= 0, goto error
);
1191 bset
= isl_basic_set_alloc(ctx
, 0, vec
->size
- 1, 0, vec
->size
- 1, 0);
1194 dim
= isl_basic_set_n_dim(bset
);
1195 for (i
= dim
- 1; i
>= 0; --i
) {
1196 k
= isl_basic_set_alloc_equality(bset
);
1199 isl_seq_clr(bset
->eq
[k
], 1 + dim
);
1200 isl_int_neg(bset
->eq
[k
][0], vec
->el
[1 + i
]);
1201 isl_int_set(bset
->eq
[k
][1 + i
], vec
->el
[0]);
1207 isl_basic_set_free(bset
);
1212 __isl_give isl_basic_map
*isl_basic_map_sample(__isl_take isl_basic_map
*bmap
)
1214 struct isl_basic_set
*bset
;
1215 struct isl_vec
*sample_vec
;
1217 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
1218 sample_vec
= isl_basic_set_sample_vec(bset
);
1221 if (sample_vec
->size
== 0) {
1222 isl_vec_free(sample_vec
);
1223 return isl_basic_map_set_to_empty(bmap
);
1225 isl_vec_free(bmap
->sample
);
1226 bmap
->sample
= isl_vec_copy(sample_vec
);
1227 bset
= isl_basic_set_from_vec(sample_vec
);
1228 return isl_basic_map_overlying_set(bset
, bmap
);
1230 isl_basic_map_free(bmap
);
1234 __isl_give isl_basic_set
*isl_basic_set_sample(__isl_take isl_basic_set
*bset
)
1236 return isl_basic_map_sample(bset
);
1239 __isl_give isl_basic_map
*isl_map_sample(__isl_take isl_map
*map
)
1242 isl_basic_map
*sample
= NULL
;
1247 for (i
= 0; i
< map
->n
; ++i
) {
1248 sample
= isl_basic_map_sample(isl_basic_map_copy(map
->p
[i
]));
1251 if (!ISL_F_ISSET(sample
, ISL_BASIC_MAP_EMPTY
))
1253 isl_basic_map_free(sample
);
1256 sample
= isl_basic_map_empty(isl_map_get_space(map
));
1264 __isl_give isl_basic_set
*isl_set_sample(__isl_take isl_set
*set
)
1266 return bset_from_bmap(isl_map_sample((isl_map
*) set
));
1269 __isl_give isl_point
*isl_basic_set_sample_point(__isl_take isl_basic_set
*bset
)
1274 dim
= isl_basic_set_get_space(bset
);
1275 bset
= isl_basic_set_underlying_set(bset
);
1276 vec
= isl_basic_set_sample_vec(bset
);
1278 return isl_point_alloc(dim
, vec
);
1281 __isl_give isl_point
*isl_set_sample_point(__isl_take isl_set
*set
)
1289 for (i
= 0; i
< set
->n
; ++i
) {
1290 pnt
= isl_basic_set_sample_point(isl_basic_set_copy(set
->p
[i
]));
1293 if (!isl_point_is_void(pnt
))
1295 isl_point_free(pnt
);
1298 pnt
= isl_point_void(isl_set_get_space(set
));