|
Primorial |
The Prime Pages keeps a list of the 5000 largest known primes, plus a few each of certain selected archivable forms and classes. These forms are defined in this collection's home page. This page is about one of those forms. Comments and suggestions requested.
Let p# (p-primorial) be the product of the primes less than or equal to p so
rank prime digits who when comment 1 1098133# - 1 476311 p346 Mar 2012 Primorial 2 843301# - 1 365851 p302 Dec 2010 Primorial 3 392113# + 1 169966 p16 Sep 2001 Primorial 4 366439# + 1 158936 p16 Aug 2001 Primorial 5 145823# + 1 63142 p21 May 2000 Primorial 6 42209# + 1 18241 p8 May 1999 Primorial 7 24029# + 1 10387 C Dec 1993 Primorial 8 23801# + 1 10273 C Dec 1993 Primorial 9 18523# + 1 8002 D Dec 1989 Primorial 10 15877# - 1 6845 CD Dec 1992 Primorial 11 13649# + 1 5862 D Dec 1987 Primorial 12 13033# - 1 5610 CD Dec 1992 Primorial 13 11549# + 1 4951 D Dec 1986 Primorial 14 6569# - 1 2811 D Dec 1992 Primorial 15 4787# + 1 2038 D Dec 1984 Primorial 16 4583# - 1 1953 D Dec 1992 Primorial 17 4547# + 1 1939 D Dec 1984 Primorial 18 4297# - 1 1844 D Dec 1992 Primorial 19 4093# - 1 1750 CD Oct 1992 Primorial 20 3229# + 1 1368 D Dec 1984 Primorial
- BCP82
- J. P. Buhler, R. E. Crandall and M. A. Penk, "Primes of the form n! ± 1 and 2 · 3 · 5 ... p ± 1," Math. Comp., 38:158 (1982) 639--643. Corrigendum in Math. Comp. 40 (1983), 727. MR 83c:10006
- Borning72
- A. Borning, "Some results for k! ± 1 and 2 · 3 · 5 ... p ± 1," Math. Comp., 26 (1972) 567--570. MR 46:7133
- Caldwell95
- C. Caldwell, "On the primality of n! ± 1 and 2 · 3 · 5 ... p ± 1," Math. Comp., 64:2 (1995) 889--890. MR 95g:11003
- CD93
- C. Caldwell and H. Dubner, "Primorial, factorial and multifactorial primes," Math. Spectrum, 26:1 (1993/4) 1--7.
- CG2000
- C. Caldwell and Y. Gallot, "On the primality of n! ± 1 and 2 × 3 × 5 × ... × p ± 1," Math. Comp., 71:237 (2002) 441--448. MR 2002g:11011 (Abstract available) (Annotation available)
- Dubner87
- H. Dubner, "Factorial and primorial primes," J. Recreational Math., 19:3 (1987) 197--203.
- Dubner89a
- H. Dubner, "A new primorial prime," J. Recreational Math., 21:4 (1989) 276.
- Krizek2008
- M. Křížek and L. Somer, "Euclidean primes have the minimum number of primitive roots," JP J. Algebra Number Theory Appl., 12:1 (2008) 121--127. MR2494078
- Templer80
- M. Templer, "On the primality of k! + 1 and 2 * 3 * 5 * ... * p + 1," Math. Comp., 34 (1980) 303-304. MR 80j:10010