Algebra Practice Questions Hard Level
Algebra questions basically involve modeling word problems into equations and then solving them. Some of the very basic formulae that come in handy while solving algebra questions are :
- (a + b) 2 = a 2 + b 2 + 2 a b
- (a - b) 2 = a 2 + b 2 - 2 a b
- (a + b) 2 - (a - b) 2 = 4 a b
- (a + b) 2 + (a - b) 2 = 2 (a 2 + b 2 )
- (a2 - b2 ) = (a + b) (a - b)
- (a + b + c) 2 = a 2 + b 2 + c 2 + 2 (a b + b c + c a)
- (a 3 + b 3 ) = (a + b) (a 2 - a b + b 2 )
- (a 3 - b 3 ) = (a - b) (a 2 + a b + b 2 )
- (a3 + b3 + c3 - 3 a b c) = (a + b + c) (a2 + b2 + c2 - a b - b c - c a)
- If a + b + c = 0, then a3 + b3 + c3 = 3 a b c
- For a quadratic equation ax2 + bx + c = 0, x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Check: Tips & Tricks for Algebra
Solved Questions on Algebra (Hard)
Question 1: If a = 1 – 1/b and b = 1 – 1/c, then the value of c – 1/a is
Solution.
a = 1 – 1/b
=>ab = b - 1
=>1/a = b/(b - 1) ——–(1)And
b = 1-1/c
=>b + 1/c = 1
=> bc + 1 = c
=> bc – c = -1
=> c(b – 1) = -1
=> c = 1/(1 – b) ———–(2)putting the values of 1/a and c from above 1 and 2 in c – 1/a,
1/(1 – b)- b/(b-1) = (b + 1)/(1 - b)
Question 2: If a + b + c = 3, then the value of 1/(1 – a)(1 – b) + 1/(1 – b)(1 – c) + 1/(1 – c)(1 – a)
Solution:
= 1/(1 – a)(1 – b) + 1/(1 – b)(1 – c) + 1/(1 – c)(1 – a)
=> [(1 – c) + (1 – a) + (1 – b)]/(1 – a)(1 – b)(1 – c)
=> [3 – (a + b + c)]/(1 – a)(1 – b)(1 – c)
=> 3 – 3 /(1 – a)(1 – b)(1 – c)
=> 0
Question 3: If a + 1/a = √3, then the value of a18 + a12 + a6 + 1 is
Solution:
a3 + 1/a3 = (a + 1/a)3 – 3(a + 1/a)
=> 3 √3 – 3 √3
=> 0
a3 + 1/a3 = 0
a6 + 1 = 0Then,
a18 + a12 + a6 + 1
a12(a6 + 1) + (a6 + 1)
a12 x 0 + 0 = 0
Question 4: If a = √3 + 1 / √3 -1 and b = √3 -1 / √3 + 1, then find the value of (a2 + ab + b2)/(a2 – ab + b2) is
Solution:
a = 1/b
therefore ab = 1
a + b = (√3 + 1) / ( √3 -1) + (√3 -1) / (√3 + 1)
=> (3 + 1 + 2√3 + 3 + 1 – 2√3)/ (3 – 1)
=> 8/2
=> 4a + b = 4
a2 + b2 = 42 – 2 *(ab)
a2 + b2 = 14Now, (a2 + ab + b2)/(a2 – ab + b2)
=>(14 + 1)/(14 -1)
=> 15/13
Question 5: If x = 8, then find value of x5 – 9x4 + 9x3 – 9x2 + 9x1 – 1
Solution:
We can write it as
85 – 8*x4 – 1*x4 + 8*x3 + 1*x3 – 8*x2 – 1*x2 +8*x1+ 1*x1 – 1
Now put x = 8
85 – 8*84 – 1*84 + 8*83 + 1*83 – 8*82 – 1*82 +8*81+ 1*81 – 1
= 8 – 1
= 7
Question 6: If m=√7 + √7 + √7….. and n=√7 - √7 - √7……., then among the following relation between m and n holds is
Solution:
m = √(7 + m)
m2 = 7 + m
m2 – m = 7…….(1)
and n = √(7 – n)
n2 + n = 7…….(2)from (1) and (2)
m2 – m = n2 + n
m2 – n2 – (m + n) = 0
(m + n)(m – n) – (m + n)= 0
m – n – 1 = 0
Question 7: If x2 + y2 + z2 = 2(x + y -1), then the value of x3 + y3 + z3?
Solution:
x2 + y2 + z2 = 2x + 2y -2
(x2 + 1 -2x) +(y2 + 1 -2y) + (z2) = 0
(x – 1)2 + (y – 1)2 + (z)2 = 0
=> (x – 1)2 = 0
=> x = 1
(y – 1)2 = 0
=> y=1
(z)2 = 0
=> z = 0Put value in eq
x3 + y3 + z3
13 + 13 + 03
=> 2
Question 8: If (x12 + 1 )/x6 = 6, then the value of (x36 + 1 )/x18 ?
Solution:
Given
(x12 + 1 )/x6 = 6
x6 + 1 /x6 = 6Cubing both sides
(x6 + 1 /x6)3 = 63
x18 + 1/x18 + 3 (x6 + 1 /x6) = 216
x18 + 1/x18 + 3 * 6 = 216
x18 + 1/x18 = 198
(x36 + 1)/x18 = 198
Practice Problems on Algebra (Hard)
Question 1: If a = 1 − 1/b and b = 1 − 1/c, find the value of c − 1/a.
Question 2: If a + b + c = 3, find the value of: 1/(1 − a)(1 − b) + 1/(1 − b) (1 − c) + 1/(1 − c) (1 − a).
Question 3: If a + 1/a = √3, calculate a18 + a12 + a6 + 1.
Question 4: If x = 8, calculate x5 − 9x4 + 9x3 − 9x2 + 9x − 1.
Question 5: If x2 + y2 + z2 = 2(x + y − 1), calculate x3 + y3 + z3.
Question 6: If x12 + 1 /x6 = 6, find the value of x36 + 1/x18.
Question 7: If x + y + z = 6, x2 + y2 + z2 = 26, and xy + yz + zx = 14, find the value of x3 + y3 + z3 − 3xyz.
Question 8: if a = 2 + √3 and b = 2 − √3, find the value of: a5 - b5/a - b.
Answer Key:
- b + 1
- 0
- 0
- 7
- 2
- 198
- 36
- 82