Open In App

Algebra Practice Questions Hard Level

Last Updated : 17 Feb, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Algebra questions basically involve modeling word problems into equations and then solving them. Some of the very basic formulae that come in handy while solving algebra questions are :

  • (a + b) 2 = a 2 + b 2 + 2 a b
  • (a - b) 2 = a 2 + b 2 - 2 a b
  • (a + b) 2 - (a - b) 2 = 4 a b
  • (a + b) 2 + (a - b) 2 = 2 (a 2 + b 2 )
  • (a2 - b2 ) = (a + b) (a - b)
  • (a + b + c) 2 = a 2 + b 2 + c 2 + 2 (a b + b c + c a)
  • (a 3 + b 3 ) = (a + b) (a 2 - a b + b 2 )
  • (a 3 - b 3 ) = (a - b) (a 2 + a b + b 2 )
  • (a3 + b3 + c3 - 3 a b c) = (a + b + c) (a2 + b2 + c2 - a b - b c - c a)
  • If a + b + c = 0, then a3 + b3 + c3 = 3 a b c
  • For a quadratic equation ax2 + bx + c = 0, x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Check: Tips & Tricks for Algebra

Solved Questions on Algebra (Hard)

Question 1: If a = 1 – 1/b and b = 1 – 1/c, then the value of c – 1/a is 
Solution.

a = 1 – 1/b
=>ab = b - 1
=>1/a = b/(b - 1) ——–(1)

And
b = 1-1/c
=>b + 1/c = 1
=> bc + 1 = c
=> bc – c  =  -1
=> c(b – 1)  = -1
=> c  = 1/(1 – b) ———–(2)

putting the values of 1/a and c from above 1 and 2 in c – 1/a,

1/(1 – b)- b/(b-1) =    (b + 1)/(1 - b)    

Question 2: If a + b + c = 3, then the value of 1/(1 – a)(1 – b) + 1/(1 – b)(1 – c) + 1/(1 – c)(1 – a) 
Solution:

= 1/(1 – a)(1 – b) + 1/(1 – b)(1 – c) + 1/(1 – c)(1 – a) 
=> [(1 – c) + (1 – a) + (1 – b)]/(1 – a)(1 – b)(1 – c) 
=> [3 – (a + b + c)]/(1 – a)(1 – b)(1 – c) 
=> 3 – 3 /(1 – a)(1 – b)(1 – c) 
=> 0 

Question 3: If a + 1/a = √3, then the value of a18 + a12 + a6 + 1 is 
Solution:

 a3 + 1/a3 = (a + 1/a)3 – 3(a + 1/a) 
=> 3 √3 – 3 √3 
=> 0 
a3 + 1/a3 = 0 
a6 + 1 = 0 

Then, 
a18 + a12 + a6 + 1 
a12(a6 + 1) + (a6 + 1) 
a12 x 0 + 0 = 0 

Question 4: If a = √3 + 1 / √3 -1 and b = √3 -1 / √3 + 1, then find the value of (a2 + ab + b2)/(a2 – ab + b2) is 
Solution:

 a = 1/b 
therefore ab = 1 
a + b = (√3 + 1) / ( √3 -1) + (√3 -1) / (√3 + 1) 
=> (3 + 1 + 2√3 + 3 + 1 – 2√3)/ (3 – 1) 
=> 8/2 
=> 4 

a + b = 4 
a2 + b2 = 42 – 2 *(ab) 
a2 + b2 = 14 

Now, (a2 + ab + b2)/(a2 – ab + b2
=>(14 + 1)/(14 -1) 
=> 15/13 

Question 5: If x = 8, then find value of x5 – 9x4 + 9x3 – 9x2 + 9x1 – 1 
Solution: 

We can write it as 
85 – 8*x4 – 1*x4 + 8*x3 + 1*x3 – 8*x2 – 1*x2 +8*x1+ 1*x1 – 1 
Now put x = 8 
85 – 8*84 – 1*84 + 8*83 + 1*83 – 8*82 – 1*82 +8*81+ 1*81 – 1 
= 8 – 1 
7 

Question 6: If m=√7 + √7 + √7….. and n=√7 - √7 - √7……., then among the following relation between m and n holds is 
Solution:

 m = √(7 + m) 
m2 = 7 + m 
m2 – m = 7…….(1) 
and n = √(7 – n) 
n2 + n = 7…….(2) 

from (1) and (2) 
m2 – m = n2 + n 
m2 – n2 – (m + n) = 0 
(m + n)(m – n) – (m + n)= 0 
m – n – 1 = 0 

Question 7: If x2 + y2 + z2 = 2(x + y -1), then the value of x3 + y3 + z3
Solution:

 x2 + y2 + z2 = 2x + 2y -2 
(x2 + 1 -2x) +(y2 + 1 -2y) + (z2) = 0 
(x – 1)2 + (y – 1)2 + (z)2 = 0 
=> (x – 1)2 = 0 
=> x = 1 
(y – 1)2 = 0 
=> y=1 
(z)2 = 0 
=> z = 0 

Put value in eq 
x3 + y3 + z3 
13 + 13 + 03 
=> 2 

Question 8: If (x12 + 1 )/x6 = 6, then the value of (x36 + 1 )/x18 ? 
Solution:

 Given 
(x12 + 1 )/x6 = 6 
x6 + 1 /x6 = 6 

Cubing both sides 
(x6 + 1 /x6)3 = 63 
x18 + 1/x18 + 3 (x6 + 1 /x6) = 216 
x18 + 1/x18 + 3 * 6 = 216 
x18 + 1/x18 = 198 
(x36 + 1)/x18 = 198 

Practice Problems on Algebra (Hard)

Question 1: If a = 1 − 1/b and b = 1 − 1/c​, find the value of c − 1/a.

Question 2: If a + b + c = 3, find the value of: 1/(1 − a)(1 − b)​ + 1/(1 − b) (1 − c) ​+ 1/(1 − c) (1 − a).

Question 3: If a + 1/a = √3, calculate a18 + a12 + a6 + 1.

Question 4: If x = 8, calculate x5 − 9x4 + 9x3 − 9x2 + 9x − 1.

Question 5: If x2 + y2 + z2 = 2(x + y − 1), calculate x3 + y3 + z3.

Question 6: If x12 + 1 /x6 = 6, find the value of x36 + 1/x18.

Question 7: If x + y + z = 6, x2 + y2 + z2 = 26, and xy + yz + zx = 14, find the value of x3 + y3 + z3 − 3xyz.

Question 8: if a = 2 + √3 and b = 2 − √3, find the value of: a5 - b5/a - b.

Answer Key:

  1. b + 1​
  2. 0
  3. 0
  4. 7
  5. 2
  6. 198
  7. 36
  8. 82

Practice More –

Quiz – Algebra Quiz


Next Article

Similar Reads