Convert Bytes To a Pandas Dataframe
In Python, bytes are a built-in data type used to represent a sequence of bytes. They are immutable sequences of integers, with each integer typically representing a byte of data ranging from 0 to 255.
Convert Bytes Data into a Python Pandas Dataframe?
We can convert bytes into data frames using different methods:
1. Using the pd.DataFrame Constructor, bytes_data decoder and StringIO
We can convert bytes into data frames using pd.DataFrame constructor directly. Here, we created a byte data and stored it in a variable, we converted this byte data into string using the decode('utf-8') method then the pd.read_csv method reads the string as a CSV and converts it into a DataFrame (df_method1).
import pandas as pd
from io import StringIO
# Sample bytes data
bytes_data = b'Name,Age,Occupation\nJohn,25,Engineer\nAlice,30,Doctor\nBob,28,Artist'
# Convert bytes to string and then to DataFrame
data_str = bytes_data.decode('utf-8')
df_method1 = pd.read_csv(StringIO(data_str))
# Display the DataFrame
print(df_method1)
Output:
Name Age Occupation
0 John 25 Engineer
1 Alice 30 Doctor
2 Bob 28 Artist
2. Using NumPy and io.BytesIO
The io.BytesIO class is part of Python's built-in io module. It provides a way to create a file-like object that operates on in-memory bytes data.
Here, we use NumPy's genfromtxt() function to read data from a CSV-like formatted byte stream. BytesIO(bytes_data) creates a file-like object that provides a stream interface to the bytes data. delimiter=',' names=True, dtype=None, and encoding='utf-8' specifies the parameters of the encoding.
Then we converted this array data into dataframe.
import numpy as np
import pandas as pd
from io import BytesIO
# Sample bytes data
bytes_data = b'Name,Age,Occupation\nJohn,25,Engineer\nAlice,30,Doctor\nBob,28,Artist'
# Convert bytes to DataFrame using NumPy and io.BytesIO
array_data = np.genfromtxt(
BytesIO(bytes_data), delimiter=',', names=True, dtype=None, encoding='utf-8')
df_method2 = pd.DataFrame(array_data)
# Display the DataFrame
print(df_method2)
Output:
Name Age Occupation
0 John 25 Engineer
1 Alice 30 Doctor
2 Bob 28 Artist
3. Using Custom Parsing Function
We can use parsing function. here, the code decodes bytes data into strings using UTF-8 encoding, then splits it into records by newline characters. Each record is further split into key-value pairs delimited by '|', and key-value pairs by ':'. It constructs dictionaries for each record, with keys and values derived from the splits.
Finally, it assembles these dictionaries into a DataFrame using pandas. This approach allows structured byte data to be converted into a tabular format
import pandas as pd
# Sample bytes data
bytes_data = b'Name:John|Age:25|Occupation:Engineer\nName:Alice|Age:30|Occupation:Doctor\nName:Bob|Age:28|Occupation:Artist'
def parse_bytes_data(data):
# Decode bytes data and split into records
records = data.decode('utf-8').split('\n')
parsed_data = []
for record in records:
if record: # Skip empty records
items = record.split('|') # Split record into key-value pairs
record_dict = {}
for item in items:
key, value = item.split(':') # Split key-value pair
record_dict[key] = value
# Append record dictionary to parsed data
parsed_data.append(record_dict)
return pd.DataFrame(parsed_data) # Create DataFrame from parsed data
# Convert bytes to DataFrame using custom parsing function
df_method3 = parse_bytes_data(bytes_data)
# Display the DataFrame
print(df_method3)
Output:
Name Age Occupation
0 John 25 Engineer
1 Alice 30 Doctor
2 Bob 28 Artist
Conclusion
In conclusion, Python offers different methods for converting bytes to DataFrames like Using the pd.DataFrame Constructor, Using NumPy and io.BytesIO, and Custom Parsing Functions.