How to Create Deque of Multimap in C++?
Last Updated :
01 Apr, 2024
Improve
In C++, a deque (double-ended queue) is a data structure that allows insertion and deletion at both ends, while a multimap is an associative container that contains key-value pairs, where multiple keys can have the same value. In this article, we will learn how to create a deque of multimaps in C++ STL.
Example:
Input: myMultimap1 = { {1, "apple"}, {2, "banana"}, {1, "mango"} } myMultimap2 = { {3, "grapes"}, {4, "orange"}, {3, "kiwi"} } Output: myDeque: [ { {1, "apple"}, {2, "banana"}, {1, "mango"} }, { {3, "grapes"}, {4, "orange"}, {3, "kiwi"} } ]
Creating Deque of Multimap in C++
To create a std::deque
of std::multimap
in C++, we can pass the type of the deque container to be of the type std::multimap
as a template parameter while declaration.
Syntax to Create a Deque of Multimaps in C++
deque<multimap<dataType1, dataType2>> dequeName;
Here,
dataType1
denotes the data type of the key stored in the multimap.dataType2
denotes the data type of the value stored in the multimap.dequeName
is a name of deque of multimaps.
C++ Program to Create Deque of Multimap
The below example demonstrates how we can create a deque of multimaps in C++.
// C++ Program to illustrate how to create deque of multimap
#include <deque>
#include <iostream>
#include <map>
using namespace std;
int main()
{
// Creating a deque of multimaps
deque<map<int, string> > dequeMulMap;
// Creating multimaps and adding elements to them
map<int, string> mmap1
= { { 1, "apple" }, { 2, "banana" } };
map<int, string> mmap2
= { { 3, "orange" }, { 4, "grape" } };
// Pushing multimaps into the deque
dequeMulMap.push_back(mmap1);
dequeMulMap.push_back(mmap2);
// Displaying the deque
cout << "myDeque: " << endl;
int i = 1;
for (auto& ele : dequeMulMap) {
cout << "Multimap" << i++ << ": ";
for (auto& pair : ele) {
cout << "{" << pair.first << ", " << pair.second
<< "} ";
}
cout << endl;
}
return 0;
}
Output
myDeque: Multimap1: {1, apple} {2, banana} Multimap2: {3, orange} {4, grape}
Time Complexity: O(N * M), where N is the number of maps and M is the average size of each map.
Auxilliary Space: O(N * M)