Open In App

Design a stack that supports getMin() in O(1) time

Last Updated : 26 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Design a Data Structure SpecialStack that supports all the stack operations like push(), pop(), peek() and an additional operation getMin() which should return minimum element from the SpecialStack. All these operations of SpecialStack must have a time complexity of O(1). 

Example: 

Input: queries = [push(2), push(3), peek(), pop(), getMin(), push(1), getMin()]
Output: [3, 2, 1]
Explanation:
push(2): Stack is [2]
push(3): Stack is [2, 3]
peek(): Top element is 3
pop(): Removes 3, stack is [2]
getMin(): Minimum element is 2
push(1): Stack is [2, 1]
getMin(): Minimum element is 1

Input: queries = [push(10), getMin(), push(5), getMin(), pop()]
Output: [10, 5]
Explanation:
push(10): Stack is [10]
getMin(): Minimum element is 10
push(5): Stack is [10, 5]
getMin(): Minimum element is 5
pop(): Removes 5, stack is [10]

Using an Auxiliary Stack - O(n) Time and O(n) Space

Use two stacks: one to store actual stack elements and the other as an auxiliary stack to store minimum values. The idea is to do push() and pop() operations in such a way that the top of the auxiliary stack is always the minimum. Let us see how push() and pop() operations work.

Push(int x)

  1. push x to the first stack (the stack with actual elements) 
  2. compare x with the top element of the second stack (the auxiliary stack). Let the top element be y. 
    • If x is smaller than y then push x to the auxiliary stack. 
    • If x is greater than y then push y to the auxiliary stack.

int Pop()

  1. pop the top element from the auxiliary stack. 
  2. pop the top element from the actual stack and return it. Step 1 is necessary to make sure that the auxiliary stack is also updated for future operations.

int getMin()

  1. Return the top element of the auxiliary stack.


C++
#include <iostream>
#include <stack>
using namespace std;

class SpecialStack {
    stack<int> s; 
    stack<int> minStack; 

public:
    void push(int x) {
        s.push(x);
        
        // If the minStack is empty or the new element is smaller than 
        // the top of minStack, push it onto minStack
        if (minStack.empty() || x <= minStack.top()) {
            minStack.push(x);
        } else {
            
            // Otherwise, push the top element of minStack 
            // again to keep the minimum unchanged
            minStack.push(minStack.top());
        }
    }

    // Pop the top element from the stack
    int pop() {
        if (s.empty()) {
            return -1;
        }
        // Pop from both stacks
        int poppedElement = s.top();
        s.pop();
        minStack.pop();
        return poppedElement;
    }

    // Return the top element of the stack without removing it
    int peek() {
        if (s.empty()) {
            return -1;
        }
        return s.top();
    }

    // Check if the stack is empty
    bool isEmpty() {
        return s.empty();
    }

    // Get the minimum element in the stack
    int getMin() {
        if (minStack.empty()) {
            return -1;
        }
        return minStack.top();
    }
};

int main() {
    SpecialStack stack;
    
    stack.push(18);
    stack.push(19);
    stack.push(29);
    stack.push(15);
    stack.push(16);

    cout << stack.getMin() << endl;

    return 0;
}
Java
import java.util.Stack;

class SpecialStack {
    Stack<Integer> s = new Stack<>();
    Stack<Integer> minStack = new Stack<>();

    public void push(int x) {
        s.push(x);
        // If the minStack is empty or the new element is smaller than 
        // the top of minStack, push it onto minStack
        if (minStack.isEmpty() || x <= minStack.peek()) {
            minStack.push(x);
        } else {
            // Otherwise, push the top element of minStack 
            // again to keep the minimum unchanged
            minStack.push(minStack.peek());
        }
    }

    // Pop the top element from the stack
    public int pop() {
        if (s.isEmpty()) {
            return -1;
        }
        // Pop from both stacks
        int poppedElement = s.pop();
        minStack.pop();
        return poppedElement;
    }

    // Return the top element of the stack without removing it
    public int peek() {
        if (s.isEmpty()) {
            return -1;
        }
        return s.peek();
    }

    // Check if the stack is empty
    public boolean isEmpty() {
        return s.isEmpty();
    }

    // Get the minimum element in the stack
    public int getMin() {
        if (minStack.isEmpty()) {
            return -1;
        }
        return minStack.peek();
    }
}

public class GfG {
    public static void main(String[] args) {
        SpecialStack stack = new SpecialStack();
        
        stack.push(18);
        stack.push(19);
        stack.push(29);
        stack.push(15);
        stack.push(16);

        System.out.println(stack.getMin());
    }
}
Python
class specialStack:
    def __init__(self):
        self.s = []
        self.minStack = []

    def push(self, x):
        self.s.append(x)
        # If the minStack is empty or the new element is smaller than 
        # the top of minStack, push it onto minStack
        if not self.minStack or x <= self.minStack[-1]:
            self.minStack.append(x)
        else:
            # Otherwise, push the top element of minStack 
            # again to keep the minimum unchanged
            self.minStack.append(self.minStack[-1])

    # Pop the top element from the stack
    def pop(self):
        if not self.s:
            return -1
        # Pop from both stacks
        poppedElement = self.s.pop()
        self.minStack.pop()
        return poppedElement

    # Return the top element of the stack without removing it
    def peek(self):
        if not self.s:
            return -1
        return self.s[-1]

    # Check if the stack is empty
    def isEmpty(self):
        return len(self.s) == 0

    # Get the minimum element in the stack
    def getMin(self):
        if not self.minStack:
            return -1
        return self.minStack[-1]

if __name__ == '__main__':
    stack = specialStack()
    
    stack.push(18)
    stack.push(19)
    stack.push(29)
    stack.push(15)
    stack.push(16)

    print(stack.getMin())
C#
using System;
using System.Collections.Generic;

class SpecialStack {
    Stack<int> s = new Stack<int>();
    Stack<int> minStack = new Stack<int>();

    public void Push(int x) {
        s.Push(x);
        // If the minStack is empty or the new element is smaller than 
        // the top of minStack, push it onto minStack
        if (minStack.Count == 0 || x <= minStack.Peek()) {
            minStack.Push(x);
        } else {
            // Otherwise, push the top element of minStack 
            // again to keep the minimum unchanged
            minStack.Push(minStack.Peek());
        }
    }

    // Pop the top element from the stack
    public int Pop() {
        if (s.Count == 0) {
            return -1;
        }
        // Pop from both stacks
        int poppedElement = s.Pop();
        minStack.Pop();
        return poppedElement;
    }

    // Return the top element of the stack without removing it
    public int Peek() {
        if (s.Count == 0) {
            return -1;
        }
        return s.Peek();
    }

    // Check if the stack is empty
    public bool IsEmpty() {
        return s.Count == 0;
    }

    // Get the minimum element in the stack
    public int GetMin() {
        if (minStack.Count == 0) {
            return -1;
        }
        return minStack.Peek();
    }
}

class GfG {
    static void Main() {
        SpecialStack stack = new SpecialStack();
        
        stack.Push(18);
        stack.Push(19);
        stack.Push(29);
        stack.Push(15);
        stack.Push(16);

        Console.WriteLine(stack.GetMin());
    }
}
JavaScript
class specialStack {
    constructor() {
        this.s = [];
        this.minStack = [];
    }

    push(x) {
        this.s.push(x);
        // If the minStack is empty or the new element is smaller than 
        // the top of minStack, push it onto minStack
        if (this.minStack.length === 0 || x <= this.minStack[this.minStack.length - 1]) {
            this.minStack.push(x);
        } else {
            // Otherwise, push the top element of minStack 
            // again to keep the minimum unchanged
            this.minStack.push(this.minStack[this.minStack.length - 1]);
        }
    }

    // Pop the top element from the stack
    pop() {
        if (this.s.length === 0) {
            return -1;
        }
        // Pop from both stacks
        const poppedElement = this.s.pop();
        this.minStack.pop();
        return poppedElement;
    }

    // Return the top element of the stack without removing it
    peek() {
        if (this.s.length === 0) {
            return -1;
        }
        return this.s[this.s.length - 1];
    }

    // Check if the stack is empty
    isEmpty() {
        return this.s.length === 0;
    }

    // Get the minimum element in the stack
    getMin() {
        if (this.minStack.length === 0) {
            return -1;
        }
        return this.minStack[this.minStack.length - 1];
    }
}

const stack = new specialStack();

stack.push(18);
stack.push(19);
stack.push(29);
stack.push(15);
stack.push(16);

console.log(stack.getMin());

Output
15

Time Complexity: 

  • For insert operation: O(1) (As insertion 'push' in a stack takes constant time)
  • For delete operation: O(1) (As deletion 'pop' in a stack takes constant time)
  • For 'Get Min' operation: O(1) (As we have used an auxiliary stack which has it's top as the minimum element)

Auxiliary Space: O(n)

Using a Pair in Stack - O(1) Time and O(n) Space

This approach uses a stack where each element is stored as a pair: the element itself and the minimum value up to that point. When an element is pushed, the minimum is updated. The getMin() function directly accesses the minimum value from the top of the stack in constant time, ensuring that both push(), pop(), and getMin() operations are O(1). This approach efficiently tracks the minimum value without needing to traverse the stack.

C++
// C++ program to implement a stack that supports
// all operations in O(1) time and O(n) extra space.

#include <iostream>
#include <stack>
using namespace std;

// A user defined stack that supports getMin() in
// addition to push(), pop() and peek()
class SpecialStack {
private:
    stack<pair<int, int> > s;

public:
    SpecialStack() {
        
    }
    
    // Add an element to the top of Stack
    void push(int x) {
        int newMin = s.empty() ? x : min(x, s.top().second);

        // we push the pair of given element and newMin into stack
        s.push({ x, newMin });
    }
    
    // Remove the top element from the Stack
    void pop() {
        if (!s.empty()) {
            s.pop();
        }
    }
    
    // Returns top element of the Stack
    int peek() {
        if (s.empty()) {
            return -1;
        }

        int top = s.top().first;
        return top;
    }
    
    // Finds minimum element of Stack
    int getMin() {
        if (s.empty()) {
            return -1;
        }
        
        int mn = s.top().second;
        return mn;
    }
};

int main() {
    SpecialStack ss;
    
    // Function calls
    ss.push(2);
    ss.push(3);
    cout << ss.peek() << " ";
    ss.pop();
    cout << ss.getMin() << " ";
    ss.push(1);
    cout << ss.getMin() << " ";
}
Java
// Java program to implement a stack that supports
// all operations in O(1) time and O(n) extra space.

import java.util.Stack;

class SpecialStack {
    private Stack<int[]> s;

    public SpecialStack() {
        s = new Stack<>();
    }

    // Add an element to the top of Stack
    public void push(int x) {
        int newMin = s.isEmpty() ? x : Math.min(x, s.peek()[1]);
        s.push(new int[]{x, newMin});
    }

    // Remove the top element from the Stack
    public void pop() {
        if (!s.isEmpty()) {
            s.pop();
        }
    }

    // Returns top element of the Stack
    public int peek() {
        return s.isEmpty() ? -1 : s.peek()[0];
    }

    // Finds minimum element of Stack
    public int getMin() {
        return s.isEmpty() ? -1 : s.peek()[1];
    }

    public static void main(String[] args) {
        SpecialStack ss = new SpecialStack();

        // Function calls
        ss.push(2);
        ss.push(3);
        System.out.print(ss.peek() + " ");
        ss.pop();
        System.out.print(ss.getMin() + " ");
        ss.push(1);
        System.out.print(ss.getMin() + " ");
    }
}
Python
# Python program to implement a stack that supports
# all operations in O(1) time and O(n) extra space.

class SpecialStack:
    def __init__(self):
        self.s = []

    # Add an element to the top of Stack
    def push(self, x):
        newMin = x if not self.s else min(x, self.s[-1][1])
        self.s.append((x, newMin))

    # Remove the top element from the Stack
    def pop(self):
        if self.s:
            self.s.pop()

    # Returns top element of the Stack
    def peek(self):
        return -1 if not self.s else self.s[-1][0]

    # Finds minimum element of Stack
    def getMin(self):
        return -1 if not self.s else self.s[-1][1]

if __name__ == "__main__":
    ss = SpecialStack()
    # Function calls
    ss.push(2)
    ss.push(3)
    print(ss.peek(), end=" ")
    ss.pop()
    print(ss.getMin(), end=" ")
    ss.push(1)
    print(ss.getMin(), end=" ")
C#
// C# program to implement a stack that supports
// all operations in O(1) time and O(n) extra space.

using System;
using System.Collections.Generic;

class SpecialStack {
    private Stack<(int, int)> s;

    public SpecialStack() {
        s = new Stack<(int, int)>();
    }

    // Add an element to the top of Stack
    public void Push(int x) {
        int newMin = s.Count == 0 ? x : Math.Min(x, s.Peek().Item2);
        s.Push((x, newMin));
    }

    // Remove the top element from the Stack
    public void Pop() {
        if (s.Count > 0) {
            s.Pop();
        }
    }

    // Returns top element of the Stack
    public int Peek() {
        return s.Count == 0 ? -1 : s.Peek().Item1;
    }

    // Finds minimum element of Stack
    public int GetMin() {
        return s.Count == 0 ? -1 : s.Peek().Item2;
    }

    public static void Main() {
        SpecialStack ss = new SpecialStack();

        // Function calls
        ss.Push(2);
        ss.Push(3);
        Console.Write(ss.Peek() + " ");
        ss.Pop();
        Console.Write(ss.GetMin() + " ");
        ss.Push(1);
        Console.Write(ss.GetMin() + " ");
    }
}
JavaScript
// JavaScript program to implement a stack that supports
// all operations in O(1) time and O(n) extra space.

class SpecialStack {
    constructor() {
        this.s = [];
    }

    // Add an element to the top of Stack
    push(x) {
        let newMin = this.s.length === 0 ? x : 
                    Math.min(x, this.s[this.s.length - 1][1]);
        this.s.push([x, newMin]);
    }

    // Remove the top element from the Stack
    pop() {
        if (this.s.length > 0) {
            this.s.pop();
        }
    }

    // Returns top element of the Stack
    peek() {
        return this.s.length === 0 ? -1 : this.s[this.s.length - 1][0];
    }

    // Finds minimum element of Stack
    getMin() {
        return this.s.length === 0 ? -1 : this.s[this.s.length - 1][1];
    }
}

// Driver Code
const ss = new SpecialStack();
ss.push(2);
ss.push(3);
console.log(ss.peek() + " ");
ss.pop();
console.log(ss.getMin() + " ");
ss.push(1);
console.log(ss.getMin() + " ");

Output
-4
0
-4
-1

Without Extra Space- O(1) Time and O(1) Space

The idea is to use a variable minEle to track the minimum element in the stack. Instead of storing the actual value of minEle in the stack, we store a modified value when pushing an element smaller than minEle. This allows retrieving the previous minimum in O(1) time and space.

Operations

  1. Push(x)
    • If the stack is empty, push x and set minEle = x.
    • If x >= minEle, push x normally.
    • If x < minEle, push 2*x - minEle and update minEle = x (this encodes the previous min).
  2. Pop()
    • Remove the top element.
    • If the removed element is >= minEle, no change in minEle.
    • If the removed element is < minEle, update minEle = 2*minEle - top (decoding the previous min).
  3. Peek()
    • Returns minEle if the top is modified (encoded) or top otherwise.
  4. getMin()
    • Returns minEle, the current minimum in O(1) time.
C++
// C++ program to implement a stack that supports
// all operations in O(1) time and O(1) extra space.

#include <iostream>
#include <stack>
using namespace std;

// A user defined stack that supports getMin() in
// addition to push(), pop() and peek()
class SpecialStack {
  private:
    stack<int> s;
    int minEle;
    
  public:
    SpecialStack() {
        minEle = -1;
    }
    
    // Add an element to the top of Stack
    void push(int x) {
        if (s.empty()) {
            minEle = x;
            s.push(x);
        }

        // If new number is less than minEle
        else if (x < minEle) {
            s.push(2 * x - minEle);
            minEle = x;
        }

        else {
            s.push(x);
        }
    }
    
    // Remove the top element from the Stack
    void pop() {
        if (s.empty()) {
            return ;
        }
        
        int top = s.top();
        s.pop();
        
        // Minimum will change, if the minimum element
        // of the stack is being removed.
        if (top < minEle) {
            minEle = 2 * minEle - top;
        }
    }
    
    // Returns top element of the Stack
    int peek() {
        if (s.empty()) {
            return -1;
        }

        int top = s.top();

        // If minEle > top means minEle stores value of top.
        return (minEle > top) ? minEle : top;
    }
    
    // Finds minimum element of Stack
    int getMin() {
        if (s.empty())
            return -1;

        // variable minEle stores the minimum element
        // in the stack.
        return minEle;
    }
};

int main() {
    SpecialStack ss;
    
    // Function calls
    ss.push(2);
    ss.push(3);
    cout << ss.peek() << " ";
    ss.pop();
    cout << ss.getMin() << " ";
    ss.push(1);
    cout << ss.getMin() << " ";
}
Java
// Java program to implement a stack that supports
// all operations in O(1) time and O(1) extra space.

import java.util.Stack;

class SpecialStack {
    private Stack<Integer> s;
    private int minEle;

    public SpecialStack() {
        s = new Stack<>();
        minEle = -1;
    }

    // Add an element to the top of Stack
    public void push(int x) {
        if (s.isEmpty()) {
            minEle = x;
            s.push(x);
        }
        // If new number is less than minEle
        else if (x < minEle) {
            s.push(2 * x - minEle);
            minEle = x;
        } else {
            s.push(x);
        }
    }

    // Remove the top element from the Stack
    public void pop() {
        if (s.isEmpty()) {
            return;
        }

        int top = s.pop();

        // Minimum will change, if the minimum element
        // of the stack is being removed.
        if (top < minEle) {
            minEle = 2 * minEle - top;
        }
    }

    // Returns top element of the Stack
    public int peek() {
        if (s.isEmpty()) {
            return -1;
        }

        int top = s.peek();

        // If minEle > top means minEle stores value of top.
        return (minEle > top) ? minEle : top;
    }

    // Finds minimum element of Stack
    public int getMin() {
        if (s.isEmpty()) {
            return -1;
        }

        // variable minEle stores the minimum element
        // in the stack.
        return minEle;
    }

    public static void main(String[] args) {
        SpecialStack ss = new SpecialStack();

        // Function calls
        ss.push(2);
        ss.push(3);
        System.out.print(ss.peek() + " ");
        ss.pop();
        System.out.print(ss.getMin() + " ");
        ss.push(1);
        System.out.print(ss.getMin() + " ");
    }
}
Python
# Python program to implement a stack that supports
# all operations in O(1) time and O(1) extra space.

class SpecialStack:
    def __init__(self):
        self.s = []
        self.minEle = -1

    # Add an element to the top of Stack
    def push(self, x):
        if not self.s:
            self.minEle = x
            self.s.append(x)
        # If new number is less than minEle
        elif x < self.minEle:
            self.s.append(2 * x - self.minEle)
            self.minEle = x
        else:
            self.s.append(x)

    # Remove the top element from the Stack
    def pop(self):
        if not self.s:
            return

        top = self.s.pop()

        # Minimum will change, if the minimum element
        # of the stack is being removed.
        if top < self.minEle:
            self.minEle = 2 * self.minEle - top

    # Returns top element of Stack
    def peek(self):
        if not self.s:
            return -1

        top = self.s[-1]

        # If minEle > top means minEle stores value of top.
        return self.minEle if self.minEle > top else top

    # Finds minimum element of Stack
    def getMin(self):
        if not self.s:
            return -1

        # variable minEle stores the minimum element
        # in the stack.
        return self.minEle

if __name__ == '__main__':
    ss = SpecialStack()
    
    # Function calls
    ss.push(2)
    ss.push(3)
    print(ss.peek(), end=" ")
    ss.pop()
    print(ss.getMin(), end=" ")
    ss.push(1)
    print(ss.getMin(), end=" ")
    
C#
// C# program to implement a stack that supports
// all operations in O(1) time and O(1) extra space.

using System;
using System.Collections.Generic;

class SpecialStack {
    private Stack<int> s;
    private int minEle;

    public SpecialStack() {
        s = new Stack<int>();
        minEle = -1;
    }

    // Add an element to the top of Stack
    public void Push(int x) {
        if (s.Count == 0) {
            minEle = x;
            s.Push(x);
        }
        // If new number is less than minEle
        else if (x < minEle) {
            s.Push(2 * x - minEle);
            minEle = x;
        } else {
            s.Push(x);
        }
    }

    // Remove the top element from the Stack
    public void Pop() {
        if (s.Count == 0) {
            return;
        }

        int top = s.Pop();

        // Minimum will change, if the minimum element
        // of the stack is being removed.
        if (top < minEle) {
            minEle = 2 * minEle - top;
        }
    }

    // Returns top element of Stack
    public int Peek() {
        if (s.Count == 0) {
            return -1;
        }

        int top = s.Peek();

        // If minEle > top means minEle stores value of top.
        return (minEle > top) ? minEle : top;
    }

    // Finds minimum element of Stack
    public int GetMin() {
        if (s.Count == 0) {
            return -1;
        }

        // variable minEle stores the minimum element
        // in the stack.
        return minEle;
    }

    static void Main() {
        SpecialStack ss = new SpecialStack();

        // Function calls
        ss.Push(2);
        ss.Push(3);
        Console.Write(ss.Peek() + " ");
        ss.Pop();
        Console.Write(ss.GetMin() + " ");
        ss.Push(1);
        Console.Write(ss.GetMin() + " ");
    }
}
JavaScript
// JavaScript program to implement a stack that supports
// all operations in O(1) time and O(1) extra space.

class SpecialStack {
    constructor() {
        this.s = [];
        this.minEle = -1;
    }

    // Add an element to the top of Stack
    push(x) {
        if (this.s.length === 0) {
            this.minEle = x;
            this.s.push(x);
        }
        // If new number is less than minEle
        else if (x < this.minEle) {
            this.s.push(2 * x - this.minEle);
            this.minEle = x;
        } else {
            this.s.push(x);
        }
    }

    // Remove the top element from the Stack
    pop() {
        if (this.s.length === 0) {
            return;
        }

        let top = this.s.pop();

        // Minimum will change, if the minimum element
        // of the stack is being removed.
        if (top < this.minEle) {
            this.minEle = 2 * this.minEle - top;
        }
    }

    // Returns top element of Stack
    peek() {
        if (this.s.length === 0) {
            return -1;
        }

        let top = this.s[this.s.length - 1];

        // If minEle > top means minEle stores value of top.
        return this.minEle > top ? this.minEle : top;
    }

    // Finds minimum element of Stack
    getMin() {
        if (this.s.length === 0) {
            return -1;
        }

        // variable minEle stores the minimum element
        // in the stack.
        return this.minEle;
    }
}

// Driver Code
let ss = new SpecialStack();
ss.push(2);
ss.push(3);
console.log(ss.peek(), " ");
ss.pop();
console.log(ss.getMin(), " ");
ss.push(1);
console.log(ss.getMin(), " ");

Output
3 2 1 

How does this approach work? 

When the element to be inserted is less than minEle, we insert "2x - minEle". The important thing to note is, that 2x - minEle will always be less than x (proved below), i.e., new minEle and while popping out this element we will see that something unusual has happened as the popped element is less than the minEle. So we will be updating minEle.

How 2*x - minEle is less than x in push()? 

x < minEle which means x - minEle < 0 

// Adding x on both sides
x - minEle + x < 0 + x 
2*x - minEle < x 
We can conclude 2*x - minEle < new minEle 

While popping out, if we find the element(y) less than the current minEle, we find the new minEle = 2*minEle - y

How previous minimum element, prevMinEle is, 2*minEle - y
in pop() is y the popped element?

 // We pushed y as 2x - prevMinEle. Here 
// prevMinEle is minEle before y was inserted

y = 2*x - prevMinEle  

// Value of minEle was made equal to x
minEle = x

new minEle = 2 * minEle - y 
                   = 2*x - (2*x - prevMinEle)
                   = prevMinEle // This is what we wanted


Next Article

Similar Reads