Determine whether a universal sink exists in a directed graph
Determine whether a universal sink exists in a directed graph. A universal sink is a vertex which has no edge emanating from it, and all other vertices have an edge towards the sink.
Input : v1 -> v2 (implies vertex 1 is connected to vertex 2) v3 -> v2 v4 -> v2 v5 -> v2 v6 -> v2 Output : Sink found at vertex 2 Input : v1 -> v6 v2 -> v3 v2 -> v4 v4 -> v3 v5 -> v3 Output : No Sink
We try to eliminate n - 1 non-sink vertices in O(n) time and check the remaining vertex for the sink property.
To eliminate vertices, we check whether a particular index (A[i][j]) in the adjacency matrix is a 1 or a 0. If it is a 0, it means that the vertex corresponding to index j cannot be a sink. If the index is a 1, it means the vertex corresponding to i cannot be a sink. We keep increasing i and j in this fashion until either i or j exceeds the number of vertices.
Using this method allows us to carry out the universal sink test for only one vertex instead of all n vertices. Suppose we are left with only vertex i.
We now check for whether row i has only 0s and whether row j as only 1s except for A[i][i], which will be 0.
Illustration :
v1 -> v2 v3 -> v2 v4 -> v2 v5 -> v2 v6 -> v2 We can visualize the adjacency matrix for the above as follows: 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
We observe that vertex 2 does not have any emanating edge, and that every other vertex has an edge in vertex 2. At A[0][0] (A[i][j]), we encounter a 0, so we increment j and next look at A[0][1]. Here we encounter a 1. So we have to increment i by 1. A[1][1] is 0, so we keep increasing j.
We notice that A[1][2], A[1][3].. etc are all 0, so j will exceed the number of vertices (6 in this example). We now check row i and column i for the sink property. Row i must be completely 0, and column i must be completely 1 except for the index A[i][i]

Second Example:
v1 -> v6 v2 -> v3 v2 -> v4 v4 -> v3 v5 -> v3 We can visualize the adjacency matrix for the above as follows: 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
In this example, we observer that in row 1, every element is 0 except for the last column. So we will increment j until we reach the 1. When we reach 1, we increment i as long as the value of A[i][j] is 0. If i exceeds the number of vertices, it is not possible to have a sink, and in this case, i will exceed the number of vertices.

Implementation:
#include <bits/stdc++.h>
using namespace std;
const int MAX = 100;
class Graph {
int vertices;
int adjacency_matrix[MAX][MAX];
public:
Graph(int vertices)
{
this->vertices = vertices;
memset(adjacency_matrix, 0,
sizeof(adjacency_matrix));
}
void insert(int source, int destination)
{
adjacency_matrix[source - 1][destination - 1] = 1;
}
bool is_sink(int i)
{
for (int j = 0; j < vertices; j++) {
if (adjacency_matrix[i][j] == 1)
return false;
if (adjacency_matrix[j][i] == 0 && j != i)
return false;
}
return true;
}
int eliminate()
{
int i = 0, j = 0;
while (i < vertices && j < vertices) {
if (adjacency_matrix[i][j] == 1)
i = i + 1;
else
j = j + 1;
}
if (i > vertices)
return -1;
else if (!is_sink(i))
return -1;
else
return i;
}
};
int main()
{
int number_of_vertices = 6, number_of_edges = 5;
Graph g(number_of_vertices);
g.insert(1, 6);
g.insert(2, 3);
g.insert(2, 4);
g.insert(4, 3);
g.insert(5, 3);
int vertex = g.eliminate();
if (vertex >= 0)
cout << "Sink found at vertex " << (vertex + 1)
<< endl;
else
cout << "No Sink" << endl;
return 0;
}
//This Code is Contributed by chinmaya121221
// Java program to find whether a universal sink
// exists in a directed graph
import java.io.*;
import java.util.*;
class graph
{
int vertices;
int[][] adjacency_matrix;
// constructor to initialize number of vertices and
// size of adjacency matrix
public graph(int vertices)
{
this.vertices = vertices;
adjacency_matrix = new int[vertices][vertices];
}
public void insert(int source, int destination)
{
// make adjacency_matrix[i][j] = 1 if there is
// an edge from i to j
adjacency_matrix[source - 1][destination-1] = 1;
}
public boolean issink(int i)
{
for (int j = 0 ; j < vertices ; j++)
{
// if any element in the row i is 1, it means
// that there is an edge emanating from the
// vertex, which means it cannot be a sink
if (adjacency_matrix[i][j] == 1)
return false;
// if any element other than i in the column
// i is 0, it means that there is no edge from
// that vertex to the vertex we are testing
// and hence it cannot be a sink
if (adjacency_matrix[j][i] == 0 && j != i)
return false;
}
//if none of the checks fails, return true
return true;
}
// we will eliminate n-1 non sink vertices so that
// we have to check for only one vertex instead of
// all n vertices
public int eliminate()
{
int i = 0, j = 0;
while (i < vertices && j < vertices)
{
// If the index is 1, increment the row we are
// checking by 1
// else increment the column
if (adjacency_matrix[i][j] == 1)
i = i + 1;
else
j = j + 1;
}
// If i exceeds the number of vertices, it
// means that there is no valid vertex in
// the given vertices that can be a sink
if (i > vertices)
return -1;
else if (!issink(i))
return -1;
else return i;
}
}
public class Sink
{
public static void main(String[] args)throws IOException
{
int number_of_vertices = 6;
int number_of_edges = 5;
graph g = new graph(number_of_vertices);
/*
//input set 1
g.insert(1, 6);
g.insert(2, 6);
g.insert(3, 6);
g.insert(4, 6);
g.insert(5, 6);
*/
//input set 2
g.insert(1, 6);
g.insert(2, 3);
g.insert(2, 4);
g.insert(4, 3);
g.insert(5, 3);
int vertex = g.eliminate();
// returns 0 based indexing of vertex. returns
// -1 if no sink exits.
// returns the vertex number-1 if sink is found
if (vertex >= 0)
System.out.println("Sink found at vertex "
+ (vertex + 1));
else
System.out.println("No Sink");
}
}
# Python3 program to find whether a
# universal sink exists in a directed graph
class Graph:
# constructor to initialize number of
# vertices and size of adjacency matrix
def __init__(self, vertices):
self.vertices = vertices
self.adjacency_matrix = [[0 for i in range(vertices)]
for j in range(vertices)]
def insert(self, s, destination):
# make adjacency_matrix[i][j] = 1
# if there is an edge from i to j
self.adjacency_matrix[s - 1][destination - 1] = 1
def issink(self, i):
for j in range(self.vertices):
# if any element in the row i is 1, it means
# that there is an edge emanating from the
# vertex, which means it cannot be a sink
if self.adjacency_matrix[i][j] == 1:
return False
# if any element other than i in the column
# i is 0, it means that there is no edge from
# that vertex to the vertex we are testing
# and hence it cannot be a sink
if self.adjacency_matrix[j][i] == 0 and j != i:
return False
# if none of the checks fails, return true
return True
# we will eliminate n-1 non sink vertices so that
# we have to check for only one vertex instead of
# all n vertices
def eliminate(self):
i = 0
j = 0
while i < self.vertices and j < self.vertices:
# If the index is 1, increment the row
# we are checking by 1
# else increment the column
if self.adjacency_matrix[i][j] == 1:
i += 1
else:
j += 1
# If i exceeds the number of vertices, it
# means that there is no valid vertex in
# the given vertices that can be a sink
if i > self.vertices:
return -1
elif self.issink(i) is False:
return -1
else:
return i
# Driver Code
if __name__ == "__main__":
number_of_vertices = 6
number_of_edges = 5
g = Graph(number_of_vertices)
# input set 1
# g.insert(1, 6)
# g.insert(2, 6)
# g.insert(3, 6)
# g.insert(4, 6)
# g.insert(5, 6)
# input set 2
g.insert(1, 6)
g.insert(2, 3)
g.insert(2, 4)
g.insert(4, 3)
g.insert(5, 3)
vertex = g.eliminate()
# returns 0 based indexing of vertex.
# returns -1 if no sink exits.
# returns the vertex number-1 if sink is found
if vertex >= 0:
print("Sink found at vertex %d" % (vertex + 1))
else:
print("No Sink")
# This code is contributed by
# sanjeev2552
// C# program to find whether a universal sink
// exists in a directed graph
using System;
using System.Collections.Generic;
class graph
{
int vertices, itr;
int[,] adjacency_matrix;
// constructor to initialize number of vertices and
// size of adjacency matrix
public graph(int vertices)
{
this.vertices = vertices;
adjacency_matrix = new int[vertices, vertices];
}
public void insert(int source, int destination)
{
// make adjacency_matrix[i,j] = 1 if there is
// an edge from i to j
adjacency_matrix[source - 1, destination - 1] = 1;
}
public bool issink(int i)
{
for (int j = 0 ; j < vertices ; j++)
{
// if any element in the row i is 1, it means
// that there is an edge emanating from the
// vertex, which means it cannot be a sink
if (adjacency_matrix[i, j] == 1)
return false;
// if any element other than i in the column
// i is 0, it means that there is no edge from
// that vertex to the vertex we are testing
// and hence it cannot be a sink
if (adjacency_matrix[j, i] == 0 && j != i)
return false;
}
//if none of the checks fails, return true
return true;
}
// we will eliminate n-1 non sink vertices so that
// we have to check for only one vertex instead of
// all n vertices
public int eliminate()
{
int i = 0, j = 0;
while (i < vertices && j < vertices)
{
// If the index is 1, increment the row we are
// checking by 1
// else increment the column
if (adjacency_matrix[i, j] == 1)
i = i + 1;
else
j = j + 1;
}
// If i exceeds the number of vertices, it
// means that there is no valid vertex in
// the given vertices that can be a sink
if (i > vertices)
return -1;
else if (!issink(i))
return -1;
else return i;
}
}
public class Sink
{
public static void Main(String[] args)
{
int number_of_vertices = 6;
graph g = new graph(number_of_vertices);
/*
//input set 1
g.insert(1, 6);
g.insert(2, 6);
g.insert(3, 6);
g.insert(4, 6);
g.insert(5, 6);
*/
//input set 2
g.insert(1, 6);
g.insert(2, 3);
g.insert(2, 4);
g.insert(4, 3);
g.insert(5, 3);
int vertex = g.eliminate();
// returns 0 based indexing of vertex. returns
// -1 if no sink exits.
// returns the vertex number-1 if sink is found
if (vertex >= 0)
Console.WriteLine("Sink found at vertex "
+ (vertex + 1));
else
Console.WriteLine("No Sink");
}
}
// This code is contributed by Rajput-Ji
<script>
// JavaScript program to find whether a
// universal sink exists in a directed graph
class Graph{
// constructor to initialize number of
// vertices and size of adjacency matrix
constructor(vertices){
this.vertices = vertices
this.adjacency_matrix = new Array(this.vertices).fill(0).map(()=>new Array(this.vertices).fill(0))
}
insert(s, destination){
// make adjacency_matrix[i][j] = 1
// if there is an edge from i to j
this.adjacency_matrix[s - 1][destination - 1] = 1
}
issink(i){
for(let j=0;j<this.vertices;j++){
// if any element in the row i is 1, it means
// that there is an edge emanating from the
// vertex, which means it cannot be a sink
if(this.adjacency_matrix[i][j] == 1)
return false
// if any element other than i in the column
// i is 0, it means that there is no edge from
// that vertex to the vertex we are testing
// and hence it cannot be a sink
if(this.adjacency_matrix[j][i] == 0 && j != i)
return false
}
// if none of the checks fails, return true
return true
}
// we will eliminate n-1 non sink vertices so that
// we have to check for only one vertex instead of
// all n vertices
eliminate(){
let i = 0
let j = 0
while(i < this.vertices && j < this.vertices){
// If the index is 1, increment the row
// we are checking by 1
// else increment the column
if(this.adjacency_matrix[i][j] == 1)
i += 1
else
j += 1
}
// If i exceeds the number of vertices, it
// means that there is no valid vertex in
// the given vertices that can be a sink
if(i > this.vertices)
return -1
else if(this.issink(i) == false)
return -1
else
return i
}
}
// Driver Code
let number_of_vertices = 6
let number_of_edges = 5
let g = new Graph(number_of_vertices)
// input set 1
// g.insert(1, 6)
// g.insert(2, 6)
// g.insert(3, 6)
// g.insert(4, 6)
// g.insert(5, 6)
// input set 2
g.insert(1, 6)
g.insert(2, 3)
g.insert(2, 4)
g.insert(4, 3)
g.insert(5, 3)
let vertex = g.eliminate()
// returns 0 based indexing of vertex.
// returns -1 if no sink exits.
// returns the vertex number-1 if sink is found
if(vertex >= 0)
document.write(`Sink found at vertex ${(vertex + 1)}`,"</br>")
else
document.write("No Sink","</br>")
// This code is contributed by shinjanpatra
</script>
Output
No Sink
This program eliminates non-sink vertices in O(n) complexity and checks for the sink property in O(n) complexity.
Time complexity: O(V^2)
We have used a 2-D array of size V x V to store the adjacency matrix of the given graph. The time complexity of the algorithm is O(V^2) as we need to traverse the complete adjacency matrix to find the sink vertex.
Time complexity: O(V^2)
The space complexity of the algorithm is also O(V^2) since we need to store the adjacency matrix.
You may also try The Celebrity Problem, which is an application of this concept