Discrete logarithm (Find an integer k such that a^k is congruent modulo b)
Given three integers a, b and m. Find an integer k such that
Examples:
Input: 2 3 5
Output: 3
Explanation:
a = 2, b = 3, m = 5
The value which satisfies the above equation
is 3, because
=> 23 = 2 * 2 * 2 = 8
=> 23 (mod 5) = 8 (mod 5)
=> 3
which is equal to b i.e., 3.
Input: 3 7 11
Output: -1
A Naive approach is to run a loop from 0 to m to cover all possible values of k and check for which value of k, the above relation satisfies. If all the values of k exhausted, print -1. Time complexity of this approach is O(m)
An efficient approach is to use baby-step, giant-step algorithm by using meet in the middle trick.
Baby-step giant-step algorithm
Given a cyclic group G of order 'm', a generator 'a' of the group, and a group element 'b', the problem is to find an integer 'k' such that
So what we are going to do(according to Meet in the middle trick) is to split the problem in two parts of
Now according to the baby-step giant-step
algorithm, we can write 'k' ask=i\cdot n - j withn = \left\lceil \sqrt{m} \right\rceil and0 \leq i < n and0\leq j<n .Therefore, we have:\implies a^{i\cdot n - j} = b \pmod m \implies a^{i\cdot n} = a^{j}\cdot b \pmod m Therefore in order to solve, we precomputea^{i\cdot n} for different values of 'i'. Then fix 'b' and tries values of 'j' In RHS of the congruence relation above. It tests to see if congruence is satisfied for any value of 'j', using precomputed values of LHS.
Let's see how to use above algorithm for our question:-
First of all we have to write
Replace the 'k' in above equality, we get:-
- The term left and right can take only n distinct values as
i, j \in [0, n) . Therefore we need to generate all these terms for either left or right part of equality and store them in an array or data structure like map/unordered_map in C/C++ or Hashmap in java. - Suppose we have stored all values of LHS. Now iterate over all possible terms on the RHS for different values of j and check which value satisfies the LHS equality.
- If no value satisfies in above step for any candidate of j, print -1.
// C++ program to calculate discrete logarithm
#include<bits/stdc++.h>
using namespace std;
/* Iterative Function to calculate (x ^ y)%p in
O(log y) */
int powmod(int x, int y, int p)
{
int res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0)
{
// If y is odd, multiply x with result
if (y & 1)
res = (res*x) % p;
// y must be even now
y = y>>1; // y = y/2
x = (x*x) % p;
}
return res;
}
// Function to calculate k for given a, b, m
int discreteLogarithm(int a, int b, int m) {
int n = (int) sqrt (m) + 1;
unordered_map<int, int> value;
// Store all values of a^(n*i) of LHS
for (int i = n; i >= 1; --i)
value[ powmod (a, i * n, m) ] = i;
for (int j = 0; j < n; ++j)
{
// Calculate (a ^ j) * b and check
// for collision
int cur = (powmod (a, j, m) * b) % m;
// If collision occurs i.e., LHS = RHS
if (value[cur])
{
int ans = value[cur] * n - j;
// Check whether ans lies below m or not
if (ans < m)
return ans;
}
}
return -1;
}
// Driver code
int main()
{
int a = 2, b = 3, m = 5;
cout << discreteLogarithm(a, b, m) << endl;
a = 3, b = 7, m = 11;
cout << discreteLogarithm(a, b, m);
}
// Java program to calculate discrete logarithm
class GFG{
/* Iterative Function to calculate (x ^ y)%p in
O(log y) */
static int powmod(int x, int y, int p)
{
int res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1)>0)
res = (res*x) % p;
// y must be even now
y = y>>1; // y = y/2
x = (x*x) % p;
}
return res;
}
// Function to calculate k for given a, b, m
static int discreteLogarithm(int a, int b, int m) {
int n = (int) (Math.sqrt (m) + 1);
int[] value=new int[m];
// Store all values of a^(n*i) of LHS
for (int i = n; i >= 1; --i)
value[ powmod (a, i * n, m) ] = i;
for (int j = 0; j < n; ++j)
{
// Calculate (a ^ j) * b and check
// for collision
int cur = (powmod (a, j, m) * b) % m;
// If collision occurs i.e., LHS = RHS
if (value[cur]>0)
{
int ans = value[cur] * n - j;
// Check whether ans lies below m or not
if (ans < m)
return ans;
}
}
return -1;
}
// Driver code
public static void main(String[] args)
{
int a = 2, b = 3, m = 5;
System.out.println(discreteLogarithm(a, b, m));
a = 3;
b = 7;
m = 11;
System.out.println(discreteLogarithm(a, b, m));
}
}
// This code is contributed by mits
# Python3 program to calculate
# discrete logarithm
import math;
# Iterative Function to calculate
# (x ^ y)%p in O(log y)
def powmod(x, y, p):
res = 1; # Initialize result
x = x % p; # Update x if it is more
# than or equal to p
while (y > 0):
# If y is odd, multiply x with result
if (y & 1):
res = (res * x) % p;
# y must be even now
y = y >> 1; # y = y/2
x = (x * x) % p;
return res;
# Function to calculate k for given a, b, m
def discreteLogarithm(a, b, m):
n = int(math.sqrt(m) + 1);
value = [0] * m;
# Store all values of a^(n*i) of LHS
for i in range(n, 0, -1):
value[ powmod (a, i * n, m) ] = i;
for j in range(n):
# Calculate (a ^ j) * b and check
# for collision
cur = (powmod (a, j, m) * b) % m;
# If collision occurs i.e., LHS = RHS
if (value[cur]):
ans = value[cur] * n - j;
# Check whether ans lies below m or not
if (ans < m):
return ans;
return -1;
# Driver code
a = 2;
b = 3;
m = 5;
print(discreteLogarithm(a, b, m));
a = 3;
b = 7;
m = 11;
print(discreteLogarithm(a, b, m));
# This code is contributed by mits
// C# program to calculate discrete logarithm
using System;
class GFG{
/* Iterative Function to calculate (x ^ y)%p in
O(log y) */
static int powmod(int x, int y, int p)
{
int res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1)>0)
res = (res*x) % p;
// y must be even now
y = y>>1; // y = y/2
x = (x*x) % p;
}
return res;
}
// Function to calculate k for given a, b, m
static int discreteLogarithm(int a, int b, int m) {
int n = (int) (Math.Sqrt (m) + 1);
int[] value=new int[m];
// Store all values of a^(n*i) of LHS
for (int i = n; i >= 1; --i)
value[ powmod (a, i * n, m) ] = i;
for (int j = 0; j < n; ++j)
{
// Calculate (a ^ j) * b and check
// for collision
int cur = (powmod (a, j, m) * b) % m;
// If collision occurs i.e., LHS = RHS
if (value[cur]>0)
{
int ans = value[cur] * n - j;
// Check whether ans lies below m or not
if (ans < m)
return ans;
}
}
return -1;
}
// Driver code
static void Main()
{
int a = 2, b = 3, m = 5;
Console.WriteLine(discreteLogarithm(a, b, m));
a = 3;
b = 7;
m = 11;
Console.WriteLine(discreteLogarithm(a, b, m));
}
}
// This code is contributed by mits
<script>
// Javascript program to calculate
// discrete logarithm
/* Iterative Function to
calculate (x ^ y)%p in
O(log y) */
function powmod(x, y, p)
{
// Initialize result
let res = 1;
// Update x if it is more
// than or
// equal to p
x = x % p;
while (y > 0)
{
// If y is odd, multiply x
// with result
if ((y & 1)>0)
res = (res*x) % p;
// y must be even now
y = y>>1; // y = y/2
x = (x*x) % p;
}
return res;
}
// Function to calculate
// k for given a, b, m
function discreteLogarithm(a, b, m) {
let n = (parseInt(Math.sqrt(m), 10) + 1);
let value = new Array(m);
value.fill(0);
// Store all values of a^(n*i) of LHS
for (let i = n; i >= 1; --i)
value[ powmod (a, i * n, m) ] = i;
for (let j = 0; j < n; ++j)
{
// Calculate (a ^ j) * b and check
// for collision
let cur = (powmod (a, j, m) * b) % m;
// If collision occurs
// i.e., LHS = RHS
if (value[cur]>0)
{
let ans = value[cur] * n - j;
// Check whether ans lies
// below m or not
if (ans < m)
return ans;
}
}
return -1;
}
let a = 2, b = 3, m = 5;
document.write(
discreteLogarithm(a, b, m) + "</br>"
);
a = 3;
b = 7;
m = 11;
document.write(
discreteLogarithm(a, b, m) + "</br>"
);
</script>
<?php
// PHP program to calculate
// discrete logarithm
// Iterative Function to calculate
// (x ^ y)%p in O(log y)
function powmod($x, $y, $p)
{
$res = 1; // Initialize result
$x = $x % $p; // Update x if it is more
// than or equal to p
while ($y > 0)
{
// If y is odd, multiply x with result
if ($y & 1)
$res = ($res * $x) % $p;
// y must be even now
$y = $y >> 1; // y = y/2
$x = ($x * $x) % $p;
}
return $res;
}
// Function to calculate k for given a, b, m
function discreteLogarithm($a, $b, $m)
{
$n = (int)sqrt($m) + 1;
$value = array_fill(0, $m, NULL);
// Store all values of a^(n*i) of LHS
for ($i = $n; $i >= 1; --$i)
$value[ powmod ($a, $i * $n, $m) ] = $i;
for ($j = 0; $j < $n; ++$j)
{
// Calculate (a ^ j) * b and check
// for collision
$cur = (powmod ($a, $j, $m) * $b) % $m;
// If collision occurs i.e., LHS = RHS
if ($value[$cur])
{
$ans = $value[$cur] * $n - $j;
// Check whether ans lies below m or not
if ($ans < $m)
return $ans;
}
}
return -1;
}
// Driver code
$a = 2;
$b = 3;
$m = 5;
echo discreteLogarithm($a, $b, $m), "\n";
$a = 3;
$b = 7;
$m = 11;
echo discreteLogarithm($a, $b, $m), "\n";
// This code is contributed by ajit.
?>
Output:
3
-1
Time complexity: O(sqrt(m)*log(b))
Auxiliary space: O(sqrt(m))
A possible improvement is to get rid of binary exponentiation or log(b) factor in the second phase of the algorithm. This can be done by keeping a variable that multiplies by 'a' each time as 'an'. Let's see the program to understand more.
// C++ program to calculate discrete logarithm
#include<bits/stdc++.h>
using namespace std;
int discreteLogarithm(int a, int b, int m)
{
int n = (int) sqrt (m) + 1;
// Calculate a ^ n
int an = 1;
for (int i = 0; i<n; ++i)
an = (an * a) % m;
unordered_map<int, int> value;
// Store all values of a^(n*i) of LHS
for (int i = 1, cur = an; i<= n; ++i)
{
if (! value[ cur ])
value[ cur ] = i;
cur = (cur * an) % m;
}
for (int i = 0, cur = b; i<= n; ++i)
{
// Calculate (a ^ j) * b and check
// for collision
if (value[cur])
{
int ans = value[cur] * n - i;
if (ans < m)
return ans;
}
cur = (cur * a) % m;
}
return -1;
}
// Driver code
int main()
{
int a = 2, b = 3, m = 5;
cout << discreteLogarithm(a, b, m) << endl;
a = 3, b = 7, m = 11;
cout << discreteLogarithm(a, b, m);
}
// Java program to calculate discrete logarithm
class GFG
{
static int discreteLogarithm(int a, int b, int m)
{
int n = (int) (Math.sqrt (m) + 1);
// Calculate a ^ n
int an = 1;
for (int i = 0; i < n; ++i)
an = (an * a) % m;
int[] value=new int[m];
// Store all values of a^(n*i) of LHS
for (int i = 1, cur = an; i <= n; ++i)
{
if (value[ cur ] == 0)
value[ cur ] = i;
cur = (cur * an) % m;
}
for (int i = 0, cur = b; i <= n; ++i)
{
// Calculate (a ^ j) * b and check
// for collision
if (value[cur] > 0)
{
int ans = value[cur] * n - i;
if (ans < m)
return ans;
}
cur = (cur * a) % m;
}
return -1;
}
// Driver code
public static void main(String[] args)
{
int a = 2, b = 3, m = 5;
System.out.println(discreteLogarithm(a, b, m));
a = 3;
b = 7;
m = 11;
System.out.println(discreteLogarithm(a, b, m));
}
}
// This code is contributed by mits
# Python3 program to calculate
# discrete logarithm
import math;
def discreteLogarithm(a, b, m):
n = int(math.sqrt (m) + 1);
# Calculate a ^ n
an = 1;
for i in range(n):
an = (an * a) % m;
value = [0] * m;
# Store all values of a^(n*i) of LHS
cur = an;
for i in range(1, n + 1):
if (value[ cur ] == 0):
value[ cur ] = i;
cur = (cur * an) % m;
cur = b;
for i in range(n + 1):
# Calculate (a ^ j) * b and check
# for collision
if (value[cur] > 0):
ans = value[cur] * n - i;
if (ans < m):
return ans;
cur = (cur * a) % m;
return -1;
# Driver code
a = 2;
b = 3;
m = 5;
print(discreteLogarithm(a, b, m));
a = 3;
b = 7;
m = 11;
print(discreteLogarithm(a, b, m));
# This code is contributed by mits
// C# program to calculate discrete logarithm
using System;
class GFG
{
static int discreteLogarithm(int a, int b, int m)
{
int n = (int) (Math.Sqrt (m) + 1);
// Calculate a ^ n
int an = 1;
for (int i = 0; i < n; ++i)
an = (an * a) % m;
int[] value = new int[m];
// Store all values of a^(n*i) of LHS
for (int i = 1, cur = an; i<= n; ++i)
{
if (value[ cur ] == 0)
value[ cur ] = i;
cur = (cur * an) % m;
}
for (int i = 0, cur = b; i<= n; ++i)
{
// Calculate (a ^ j) * b and check
// for collision
if (value[cur] > 0)
{
int ans = value[cur] * n - i;
if (ans < m)
return ans;
}
cur = (cur * a) % m;
}
return -1;
}
// Driver code
static void Main()
{
int a = 2, b = 3, m = 5;
Console.WriteLine(discreteLogarithm(a, b, m));
a = 3;
b = 7;
m = 11;
Console.WriteLine(discreteLogarithm(a, b, m));
}
}
// This code is contributed by mits
<script>
// Javascript program to calculate
// discrete logarithm
function discreteLogarithm(a, b, m)
{
let n = parseInt(Math.sqrt(m), 10) + 1;
// Calculate a ^ n
let an = 1;
for (let i = 0; i < n; ++i)
an = (an * a) % m;
let value = new Array(m);
value.fill(0);
// Store all values of a^(n*i) of LHS
for (let i = 1, cur = an; i<= n; ++i)
{
if (value[ cur ] == 0)
value[ cur ] = i;
cur = (cur * an) % m;
}
for (let i = 0, cur = b; i<= n; ++i)
{
// Calculate (a ^ j) * b and check
// for collision
if (value[cur] > 0)
{
let ans = value[cur] * n - i;
if (ans < m)
return ans;
}
cur = (cur * a) % m;
}
return -1;
}
let a = 2, b = 3, m = 5;
document.write(discreteLogarithm(a, b, m) + "</br>");
a = 3;
b = 7;
m = 11;
document.write(discreteLogarithm(a, b, m));
</script>
<?php
// PHP program to calculate discrete logarithm
function discreteLogarithm($a, $b, $m)
{
$n = (int)sqrt ($m) + 1;
// Calculate a ^ n
$an = 1;
for ($i = 0; $i < $n; ++$i)
$an = ($an * $a) % $m;
$value = array_fill(0, $m, NULL);
// Store all values of a^(n*i) of LHS
for ($i = 1, $cur = $an; $i<= $n; ++$i)
{
if (! $value[ $cur ])
$value[ $cur ] = $i;
$cur = ($cur * $an) % $m;
}
for ($i = 0, $cur = $b; $i<= $n; ++$i)
{
// Calculate (a ^ j) * b and check
// for collision
if ($value[$cur])
{
$ans = $value[$cur] * $n - $i;
if ($ans < $m)
return $ans;
}
$cur = ($cur * $a) % $m;
}
return -1;
}
// Driver code
$a = 2;
$b = 3;
$m = 5;
echo discreteLogarithm($a, $b, $m), "\n";
$a = 3;
$b = 7;
$m = 11;
echo discreteLogarithm($a, $b, $m);
// This code is contributed by ajit.
?>
Output:
3
-1
Time complexity: O(sqrt(m))
Auxiliary space: O(sqrt(m))
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.