Minimize deviation of an array by given operations
Given an array A[] consisting of positive integers, the task is to calculate the minimum possible deviation of the given arrayA[] after performing the following operations any number of times:
- Operation 1: If the array element is even, divide it by 2.
- Operation 2: If the array element is odd, multiply it by 2.
The deviation of the array A[] is the difference between the maximum and minimum element present in the array A[].
Examples:
Input: A[] = {4, 1, 5, 20, 3}
Output: 3
Explanation: Array modifies to {4, 2, 5, 5, 3} after performing given operations. Therefore, deviation = 5 - 2 = 3.Input: A[] = {1, 2, 3, 4}
Output: 1
Explanation: Array modifies to after two operations to {2, 2, 3, 2}. Therefore, deviation = 3 - 2 = 1.
Approach: The problem can be solved based on the following observations:
- Even numbers can be divided multiple times until it converts to an odd number.
- Odd numbers can be doubled only once as it converts to an even number.
- Therefore, even numbers can never be increased.
Follow the steps below to solve the problem:
- Traverse the array and double all the odd array elements. This nullifies the requirement for the 2nd operation.
- Now, decrease the largest array element while it's even.
- To store the array elements in sorted manner, insert all array elements into a Set.
- Greedily reduce the maximum element present in the Set
- If the maximum element present in the Set is odd, break the loop.
- Print the minimum deviation obtained.
Below is the implementation of above approach:
// C++ implementation of the
// above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the minimum
// deviation of the array A[]
void minimumDeviation(int A[], int N)
{
// Store all array elements
// in sorted order
set<int> s;
for (int i = 0; i < N; i++) {
if (A[i] % 2 == 0)
s.insert(A[i]);
// Odd number are transformed
// using 2nd operation
else
s.insert(2 * A[i]);
}
// (Maximum - Minimum)
int diff = *s.rbegin() - *s.begin();
// Check if the size of set is > 0 and
// the maximum element is divisible by 2
while ((int)s.size()
&& *s.rbegin() % 2 == 0) {
// Maximum element of the set
int maxEl = *s.rbegin();
// Erase the maximum element
s.erase(maxEl);
// Using operation 1
s.insert(maxEl / 2);
// (Maximum - Minimum)
diff = min(diff, *s.rbegin() - *s.begin());
}
// Print the Minimum
// Deviation Obtained
cout << diff;
}
// Driver Code
int main()
{
int A[] = { 4, 1, 5, 20, 3 };
int N = sizeof(A) / sizeof(A[0]);
// Function Call to find
// Minimum Deviation of A[]
minimumDeviation(A, N);
return 0;
}
// Java program for the above approach
import java.io.*;
import java.util.*;
class GFG
{
// Function to find the minimum
// deviation of the array A[]
static void minimumDeviation(int A[], int N)
{
// Store all array elements
// in sorted order
TreeSet<Integer> s = new TreeSet<Integer>();
for (int i = 0; i < N; i++)
{
if (A[i] % 2 == 0)
s.add(A[i]);
// Odd number are transformed
// using 2nd operation
else
s.add(2 * A[i]);
}
// (Maximum - Minimum)
int diff = s.last() - s.first() ;
// Check if the size of set is > 0 and
// the maximum element is divisible by 2
while ((s.last() % 2 == 0))
{
// Maximum element of the set
int maxEl = s.last();
// Erase the maximum element
s.remove(maxEl);
// Using operation 1
s.add(maxEl / 2);
// (Maximum - Minimum)
diff = Math.min(diff, s.last() - s.first());
}
// Print the Minimum
// Deviation Obtained
System.out.print(diff);
}
// Driver code
public static void main(String[] args)
{
int A[] = { 4, 1, 5, 20, 3 };
int N = A.length;
// Function Call to find
// Minimum Deviation of A[]
minimumDeviation(A, N);
}
}
// This code is contributed by susmitakundugoaldanga.
# Python 3 implementation of the
# above approach
# Function to find the minimum
# deviation of the array A[]
def minimumDeviation(A, N):
# Store all array elements
# in sorted order
s = set([])
for i in range(N):
if (A[i] % 2 == 0):
s.add(A[i])
# Odd number are transformed
# using 2nd operation
else:
s.add(2 * A[i])
# (Maximum - Minimum)
s = list(s)
diff = s[-1] - s[0]
# Check if the size of set is > 0 and
# the maximum element is divisible by 2
while (len(s) and s[-1] % 2 == 0):
# Maximum element of the set
maxEl = s[-1]
# Erase the maximum element
s.remove(maxEl)
# Using operation 1
s.append(maxEl // 2)
# (Maximum - Minimum)
diff = min(diff, s[-1] - s[0])
# Print the Minimum
# Deviation Obtained
print(diff)
# Driver Code
if __name__ == "__main__":
A = [4, 1, 5, 20, 3]
N = len(A)
# Function Call to find
# Minimum Deviation of A[]
minimumDeviation(A, N)
# This code is contributed by chitranayal.
// C# implementation of the
// above approach
using System;
using System.Collections.Generic;
using System.Linq;
class GFG
{
// Function to find the minimum
// deviation of the array A[]
static void minimumDeviation(int[] A, int N)
{
// Store all array elements
// in sorted order
HashSet<int> s = new HashSet<int>();
for (int i = 0; i < N; i++)
{
if (A[i] % 2 == 0)
s.Add(A[i]);
// Odd number are transformed
// using 2nd operation
else
s.Add(2 * A[i]);
}
List<int> S = s.ToList();
S.Sort();
// (Maximum - Minimum)
int diff = S[S.Count - 1] - S[0];
// Check if the size of set is > 0 and
// the maximum element is divisible by 2
while ((int)S.Count != 0 && S[S.Count - 1] % 2 == 0) {
// Maximum element of the set
int maxEl = S[S.Count - 1];
// Erase the maximum element
S.RemoveAt(S.Count - 1);
// Using operation 1
S.Add(maxEl / 2);
S.Sort();
// (Maximum - Minimum)
diff = Math.Min(diff, S[S.Count - 1] - S[0]);
}
// Print the Minimum
// Deviation Obtained
Console.Write(diff);
}
// Driver code
static void Main()
{
int[] A = { 4, 1, 5, 20, 3 };
int N = A.Length;
// Function Call to find
// Minimum Deviation of A[]
minimumDeviation(A, N);
}
}
// This code is contributed by divyeshrabadiya07.
<script>
// JavaScript implementation of the
// above approach
// Function to find the minimum
// deviation of the array A[]
function minimumDeviation(A, N)
{
// Store all array elements
// in sorted order
var s = new Set();
for (var i = 0; i < N; i++) {
if (A[i] % 2 == 0)
s.add(A[i]);
// Odd number are transformed
// using 2nd operation
else
s.add(2 * A[i]);
}
var tmp = [...s].sort((a,b)=>a-b);
// (Maximum - Minimum)
var diff = tmp[tmp.length-1] - tmp[0];
// Check if the size of set is > 0 and
// the maximum element is divisible by 2
while (s.size
&& tmp[tmp.length-1] % 2 == 0) {
// Maximum element of the set
var maxEl = tmp[tmp.length-1];
// Erase the maximum element
s.delete(maxEl);
// Using operation 1
s.add(parseInt(maxEl / 2));
tmp = [...s].sort((a,b)=>a-b);
// (Maximum - Minimum)
diff = Math.min(diff, tmp[tmp.length-1] - tmp[0]);
}
// Print the Minimum
// Deviation Obtained
document.write( diff);
}
// Driver Code
var A = [4, 1, 5, 20, 3];
var N = A.length;
// Function Call to find
// Minimum Deviation of A[]
minimumDeviation(A, N);
</script>
Output:
3
Time Complexity : O(N * log(N))
Auxiliary Space : O(N)