Queries for the product of first N factorials
Given Q[] queries where each query consists of an integer N, the task is to find the product of first N factorials for each of the query. Since the result could be large, compute it modulo 109 + 7.
Examples:
Input: Q[] = {4, 5}
Output:
288
34560
Query 1: 1! * 2! * 3! * 4! = 1 * 2 * 6 * 24 = 288
Query 2: 1! * 2! * 3! * 4! * 5! = 1 * 2 * 6 * 24 * 120 = 34560
Input: Q[] = {500, 1000, 7890}
Output:
976141892
560688561
793351288
Approach: Create two arrays result[] and fact[] where fact[i] will store the factorial of i and result[i] will store the product of first i factorial.
Initialise fact[0] = 1 and result[0] = 1. Now for the rest of the values, the recurrence relation will be:
fact[i] = fact[i - 1] * i
result[i] = result[i - 1] * fact[i]
Now, each query can be answered using the result[] array generated.
Below is the implementation of the above approach:
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define MAX 1000000
const ll MOD = 1e9 + 7;
// Declare result array globally
ll result[MAX + 1];
ll fact[MAX + 1];
// Function to precompute the product
// of factorials upto MAX
void preCompute()
{
// Initialize base condition if n = 0
// then factorial of 0 is equal to 1
// and answer for n = 0 is 1
fact[0] = 1;
result[0] = 1;
// Iterate loop from 1 to MAX
for (int i = 1; i <= MAX; i++) {
// factorial(i) = factorial(i - 1) * i
fact[i] = ((fact[i - 1] % MOD) * i) % MOD;
// Result for current n is equal to result[i-1]
// multiplied by the factorial of i
result[i] = ((result[i - 1] % MOD) * (fact[i] % MOD)) % MOD;
}
}
// Function to perform the queries
void performQueries(int q[], int n)
{
// Precomputing the result till MAX
preCompute();
// Perform queries
for (int i = 0; i < n; i++)
cout << result[q[i]] << "\n";
}
// Driver code
int main()
{
int q[] = { 4, 5 };
int n = sizeof(q) / sizeof(q[0]);
performQueries(q, n);
return 0;
}
// Java implementation of the approach
import java.io.*;
class GFG
{
static int MAX = 1000000;
static int MOD = 10000007;
// Declare result array globally
static int []result = new int [MAX + 1];
static int []fact = new int [MAX + 1];
// Function to precompute the product
// of factorials upto MAX
static void preCompute()
{
// Initialize base condition if n = 0
// then factorial of 0 is equal to 1
// and answer for n = 0 is 1
fact[0] = 1;
result[0] = 1;
// Iterate loop from 1 to MAX
for (int i = 1; i <= MAX; i++)
{
// factorial(i) = factorial(i - 1) * i
fact[i] = ((fact[i - 1] % MOD) * i) % MOD;
// Result for current n is equal to result[i-1]
// multiplied by the factorial of i
result[i] = ((result[i - 1] % MOD) *
(fact[i] % MOD)) % MOD;
}
}
// Function to perform the queries
static void performQueries(int q[], int n)
{
// Precomputing the result till MAX
preCompute();
// Perform queries
for (int i = 0; i < n; i++)
System.out.println (result[q[i]]);
}
// Driver code
public static void main (String[] args)
{
int q[] = { 4, 5 };
int n = q.length;
performQueries(q, n);
}
}
// This code is contributed by tushil.
# Python3 implementation of the approach
MAX = 1000000
MOD = 10**9 + 7
# Declare result array globally
result = [0 for i in range(MAX + 1)]
fact = [0 for i in range(MAX + 1)]
# Function to precompute the product
# of factorials upto MAX
def preCompute():
# Initialize base condition if n = 0
# then factorial of 0 is equal to 1
# and answer for n = 0 is 1
fact[0] = 1
result[0] = 1
# Iterate loop from 1 to MAX
for i in range(1, MAX + 1):
# factorial(i) = factorial(i - 1) * i
fact[i] = ((fact[i - 1] % MOD) * i) % MOD
# Result for current n is
# equal to result[i-1]
# multiplied by the factorial of i
result[i] = ((result[i - 1] % MOD) *
(fact[i] % MOD)) % MOD
# Function to perform the queries
def performQueries(q, n):
# Precomputing the result tiMAX
preCompute()
# Perform queries
for i in range(n):
print(result[q[i]])
# Driver code
q = [4, 5]
n = len(q)
performQueries(q, n)
# This code is contributed by Mohit Kumar
// C# implementation of the approach
using System;
class GFG
{
static int MAX = 1000000;
static int MOD = 10000007;
// Declare result array globally
static int []result = new int [MAX + 1];
static int []fact = new int [MAX + 1];
// Function to precompute the product
// of factorials upto MAX
static void preCompute()
{
// Initialize base condition if n = 0
// then factorial of 0 is equal to 1
// and answer for n = 0 is 1
fact[0] = 1;
result[0] = 1;
// Iterate loop from 1 to MAX
for (int i = 1; i <= MAX; i++)
{
// factorial(i) = factorial(i - 1) * i
fact[i] = ((fact[i - 1] % MOD) * i) % MOD;
// Result for current n is equal to result[i-1]
// multiplied by the factorial of i
result[i] = ((result[i - 1] % MOD) *
(fact[i] % MOD)) % MOD;
}
}
// Function to perform the queries
static void performQueries(int []q, int n)
{
// Precomputing the result till MAX
preCompute();
// Perform queries
for (int i = 0; i < n; i++)
Console.WriteLine(result[q[i]]);
}
// Driver code
public static void Main (String[] args)
{
int []q = { 4, 5 };
int n = q.Length;
performQueries(q, n);
}
}
// This code is contributed by 29AjayKumar
<script>
// Javascript implementation of the approach
let MAX = 1000000;
let MOD = 10000007;
// Declare result array globally
let result = new Array(MAX + 1);
result.fill(0);
let fact = new Array(MAX + 1);
fact.fill(0);
// Function to precompute the product
// of factorials upto MAX
function preCompute()
{
// Initialize base condition if n = 0
// then factorial of 0 is equal to 1
// and answer for n = 0 is 1
fact[0] = 1;
result[0] = 1;
// Iterate loop from 1 to MAX
for (let i = 1; i <= MAX; i++)
{
// factorial(i) = factorial(i - 1) * i
fact[i] = ((fact[i - 1] % MOD) * i) % MOD;
// Result for current n is equal to result[i-1]
// multiplied by the factorial of i
result[i] = ((result[i - 1] % MOD) *
(fact[i] % MOD)) % MOD;
}
}
// Function to perform the queries
function performQueries(q, n)
{
// Precomputing the result till MAX
preCompute();
// Perform queries
for (let i = 0; i < n; i++)
document.write(result[q[i]] + "</br>");
}
let q = [ 4, 5 ];
let n = q.length;
performQueries(q, n);
</script>
Output:
288 34560
Time Complexity: O(MAX)
Auxiliary Space: O(MAX)