Sum of the first M elements of Array formed by infinitely concatenating given array
Given an array arr[] consisting of N integers and a positive integer M, the task is to find the sum of the first M elements of the array formed by the infinite concatenation of the given array arr[].
Examples:
Input: arr[] = {1, 2, 3}, M = 5
Output: 9
Explanation:
The array formed by the infinite concatenation of the given array arr[] is of the form {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, ... }.
The sum of the first M(= 5) elements of the array is 1 + 2 + 3 + 1 + 2 = 9.Input: arr[] = {1}, M = 7
Output: 7
Approach: The given problem can be solved by using the Modulo Operator (%) and consider the given array as the circular array and find the sum of the first M elements accordingly. Follow the steps below to solve this problem:
- Initialize a variable, say sum as 0 to store the resultant sum of the first M elements of the new array.
- Iterate over the range [0, M - 1] using the variable i and increment the value of sum by arr[i%N].
- After completing the above steps, print the value of the sum as the result.
Below is the implementation of the above approach:
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the sum of first
// M numbers formed by the infinite
// concatenation of the array A[]
int sumOfFirstM(int A[], int N, int M)
{
// Stores the resultant sum
int sum = 0;
// Iterate over the range [0, M - 1]
for (int i = 0; i < M; i++) {
// Add the value A[i%N] to sum
sum = sum + A[i % N];
}
// Return the resultant sum
return sum;
}
// Driver Code
int main()
{
int arr[] = { 1, 2, 3 };
int M = 5;
int N = sizeof(arr) / sizeof(arr[0]);
cout << sumOfFirstM(arr, N, M);
return 0;
}
// Java program for the above approach
import java.io.*;
import java.lang.*;
class GFG {
// Function to find the sum of first
// M numbers formed by the infinite
// concatenation of the array A[]
public static int sumOfFirstM(int A[], int N, int M)
{
// Stores the resultant sum
int sum = 0;
// Iterate over the range [0, M - 1]
for (int i = 0; i < M; i++) {
// Add the value A[i%N] to sum
sum = sum + A[i % N];
}
// Return the resultant sum
return sum;
}
// Driver Code
public static void main(String[] args) {
int arr[] = { 1, 2, 3 };
int M = 5;
int N = arr.length;
System.out.println(sumOfFirstM(arr, N, M));
}
}
// This code is contributed by gfgking.
# Python3 program for the above approach
# Function to find the sum of first
# M numbers formed by the infinite
# concatenation of the array A[]
def sumOfFirstM(A, N, M):
# Stores the resultant sum
sum = 0
# Iterate over the range [0, M - 1]
for i in range(M):
# Add the value A[i%N] to sum
sum = sum + A[i % N]
# Return the resultant sum
return sum
# Driver Code
if __name__ == '__main__':
arr = [ 1, 2, 3 ]
M = 5
N = len(arr)
print(sumOfFirstM(arr, N, M))
# This code is contributed by ipg2016107
// C# program for the above approach
using System;
class GFG {
// Function to find the sum of first
// M numbers formed by the infinite
// concatenation of the array A[]
static int sumOfFirstM(int[] A, int N, int M)
{
// Stores the resultant sum
int sum = 0;
// Iterate over the range [0, M - 1]
for (int i = 0; i < M; i++) {
// Add the value A[i%N] to sum
sum = sum + A[i % N];
}
// Return the resultant sum
return sum;
}
// Driver Code
public static void Main()
{
int[] arr = { 1, 2, 3 };
int M = 5;
int N = arr.Length;
Console.WriteLine(sumOfFirstM(arr, N, M));
}
}
// This code is contributed by subhammahato348.
<script>
// JavaScript program for the above approach
// Function to find the sum of first
// M numbers formed by the infinite
// concatenation of the array A[]
function sumOfFirstM(A, N, M) {
// Stores the resultant sum
let sum = 0;
// Iterate over the range [0, M - 1]
for (let i = 0; i < M; i++) {
// Add the value A[i%N] to sum
sum = sum + A[i % N];
}
// Return the resultant sum
return sum;
}
// Driver Code
let arr = [1, 2, 3];
let M = 5;
let N = arr.length;
document.write(sumOfFirstM(arr, N, M));
// This code is contributed by Potta Lokesh
</script>
Output:
9
Time Complexity: O(M)
Auxiliary Space: O(1)