Find (1^n + 2^n + 3^n + 4^n) mod 5 | Set 2
Last Updated :
09 Jun, 2022
Improve
Given a very large number N. The task is to find (1n + 2n + 3n + 4n) mod 5.
Examples:
Input: N = 4
Output: 4
(1 + 16 + 81 + 256) % 5 = 354 % 5 = 4
Input: N = 7823462937826332873467731
Output: 0
Approach: (1n + 2n + 3n + 4n) mod 5 = (1n mod ?(5) + 2n mod ?(5) + 3n mod ?(5) + 4n mod ?(5)) mod 5.
This formula is correct because 5 is a prime number and it is coprime with 1, 2, 3, 4.
Know about ?(n) and modulo of large number
?(5) = 4, hence (1n + 2n + 3n + 4n) mod 5 = (1n mod 4 + 2n mod 4 + 3n mod 4 + 4n mod 4) mod 5
Below is the implementation of the above approach:
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
// Function to return A mod B
int A_mod_B(string N, int a)
{
// length of the string
int len = N.size();
// to store required answer
int ans = 0;
for (int i = 0; i < len; i++)
ans = (ans * 10 + (int)N[i] - '0') % a;
return ans % a;
}
// Function to return (1^n + 2^n + 3^n + 4^n) % 5
int findMod(string N)
{
// ?(5) = 4
int mod = A_mod_B(N, 4);
int ans = (1 + pow(2, mod) + pow(3, mod)
+ pow(4, mod));
return (ans % 5);
}
// Driver code
int main()
{
string N = "4";
cout << findMod(N);
return 0;
}
// Java implementation of the approach
class GFG
{
// Function to return A mod B
static int A_mod_B(String N, int a)
{
// length of the string
int len = N.length();
// to store required answer
int ans = 0;
for (int i = 0; i < len; i++)
ans = (ans * 10 + (int)N.charAt(i) - '0') % a;
return ans % a;
}
// Function to return (1^n + 2^n + 3^n + 4^n) % 5
static int findMod(String N)
{
// ?(5) = 4
int mod = A_mod_B(N, 4);
int ans = (1 + (int)Math.pow(2, mod) +
(int)Math.pow(3, mod) +
(int)Math.pow(4, mod));
return (ans % 5);
}
// Driver code
public static void main(String args[])
{
String N = "4";
System.out.println(findMod(N));
}
}
// This code is contributed by Arnab Kundu
# Python3 implementation of the approach
# Function to return A mod B
def A_mod_B(N, a):
# length of the string
Len = len(N)
# to store required answer
ans = 0
for i in range(Len):
ans = (ans * 10 + int(N[i])) % a
return ans % a
# Function to return (1^n + 2^n + 3^n + 4^n) % 5
def findMod(N):
# ?(5) = 4
mod = A_mod_B(N, 4)
ans = (1 + pow(2, mod) +
pow(3, mod) + pow(4, mod))
return ans % 5
# Driver code
N = "4"
print(findMod(N))
# This code is contributed by mohit kumar
// C# implementation of the approach
using System;
class GFG
{
// Function to return A mod B
static int A_mod_B(string N, int a)
{
// length of the string
int len = N.Length;
// to store required answer
int ans = 0;
for (int i = 0; i < len; i++)
ans = (ans * 10 + (int)N[i] - '0') % a;
return ans % a;
}
// Function to return (1^n + 2^n + 3^n + 4^n) % 5
static int findMod(string N)
{
// ?(5) = 4
int mod = A_mod_B(N, 4);
int ans = (1 + (int)Math.Pow(2, mod) +
(int)Math.Pow(3, mod) +
(int)Math.Pow(4, mod));
return (ans % 5);
}
// Driver code
public static void Main()
{
string N = "4";
Console.WriteLine(findMod(N));
}
}
// This code is contributed by Code_Mech.
<?php
// PHP implementation of the approach
// Function to return A mod B
function A_mod_B($N, $a)
{
// length of the string
$len = strlen($N);
// to store required answer
$ans = 0;
for ($i = 0; $i < $len; $i++)
$ans = ($ans * 10 +
(int)$N[$i] - '0') % $a;
return $ans % $a;
}
// Function to return
// (1^n + 2^n + 3^n + 4^n) % 5
function findMod($N)
{
// ?(5) = 4
$mod = A_mod_B($N, 4);
$ans = (1 + pow(2, $mod) +
pow(3, $mod) + pow(4, $mod));
return ($ans % 5);
}
// Driver code
$N = "4";
echo findMod($N);
// This code is contributed
// by Akanksha Rai
?>
<script>
// Javascript implementation of the approach
// Function to return A mod B
function A_mod_B(N, a)
{
// length of the string
var len = N.length;
// to store required answer
var ans = 0;
for (var i = 0; i < len; i++)
ans = (ans * 10 + parseInt(N.charAt(i) - '0')) % a;
return ans % a;
}
// Function to return (1^n + 2^n + 3^n + 4^n) % 5
function findMod(N)
{
// ?(5) = 4
var mod = A_mod_B(N, 4);
var ans = (1 + parseInt(Math.pow(2, mod) +
Math.pow(3, mod) +
Math.pow(4, mod)));
return (ans % 5);
}
// Driver Code
var N = "4";
// Function call
document.write(findMod(N));
// This code is contributed by Kirti
</script>
Output:
4
Time Complexity: O(|N|), where |N| is the length of the string.
Auxiliary Space: O(1), since no extra space has been taken.