How to Check the Data Type in Pandas DataFrame?
Pandas DataFrame is a Two-dimensional data structure of mutable size and heterogeneous tabular data. There are different Built-in data types available in Python. Two methods used to check the datatypes are pandas.DataFrame.dtypes and pandas.DataFrame.select_dtypes.
Creating a Dataframe to Check DataType in Pandas DataFrame
Consider a dataset of a shopping store having data about Customer Serial Number, Customer Name, Product ID of the purchased item, Product Cost, and Date of Purchase.
#importing pandas as pd
import pandas as pd
# Create the dataframe
df = pd.DataFrame({
'Cust_No': [1,2,3],
'Cust_Name': ['Alex', 'Bob', 'Sophie'],
'Product_id': [12458,48484,11311],
'Product_cost': [65.25, 25.95, 100.99],
'Purchase_Date': [pd.Timestamp('20180917'),
pd.Timestamp('20190910'),
pd.Timestamp('20200610')]
})
# Print the dataframe
df
Output:
Check the Data Type in Pandas using pandas.DataFrame.dtypes
For users to check the DataType of a particular Dataset or particular column from the dataset can use this method. This method returns a list of data types for each column or also returns just a data type of a particular column
Example 1:
# Print a list datatypes of all columns
df.dtypes
Output:
Example 2:
# print datatype of particular column
df.Cust_No.dtypes
Output:
dtype('int64')
Example 3:
# Checking the Data Type of a Particular Column
df['Product_cost'].dtypes
Output:
dtype('float64')
Check the Data Type in Pandas using pandas.DataFrame.select_dtypes
Unlike checking Data Type user can alternatively perform a check to get the data for a particular Datatype if it is existing otherwise get an empty dataset in return. This method returns a subset of the DataFrame’s columns based on the column dtypes.
Example 1:
# Returns Two column of int64
df.select_dtypes(include = 'int64')
Output:

Example 2:
# Returns columns excluding int64
df.select_dtypes(exclude = 'int64')
Output :
Example 3 :
# Print an empty list as there is
# no column of bool type
df.select_dtypes(include = "bool")
Output :