How to Drop Index Column in Pandas?
Last Updated :
03 May, 2025
Improve
When working with Pandas DataFrames, it's common to reset or remove custom indexing, especially after filtering or modifying rows. Dropping the index is useful when:
- We no longer need a custom index.
- We want to restore default integer indexing (0, 1, 2, ...).
- We're preparing data for exports or transformations where index values are not needed.
In this article, we'll learn how to drop the index column in a Pandas DataFrame using the reset_index() method
Syntax of reset_index()
DataFrame.reset_index(drop=True, inplace=True)
Parameters:
- drop (bool): If True, the index is reset and the old index is not added as a new column.
- inplace (bool): If True, modifies the DataFrame in place. If False, returns a new DataFrame.
Return Type:
- Returns None if inplace=True.
- Returns a new DataFrame with reset index if inplace=False.
Example: Dropping Index Column from a Dataframe
To demonstrate the function we need to first create a DataFrame with custom indexes and then, use reset_index() method with the drop=True option to drop the index column.
import pandas as pd
data = pd.DataFrame({
"id": [7058, 7059, 7072, 7054],
"name": ['Sravan', 'Jyothika', 'Harsha', 'Ramya'],
"subjects": ['Java', 'Python', 'HTML/PHP', 'PHP/JS']
})
# Set a custom index
data.index = ['student-1', 'student-2', 'student-3', 'student-4']
print('DataFrame with Custom Index:')
print(data)
data.reset_index(drop=True, inplace=True)
print('\nDataFrame after Dropping Index:')
print(data)
Output:
Explanation:
- custom index (student-1, student-2, etc.) is assigned to the DataFrame.
- reset_index(drop=True, inplace=True) resets the index to the default 0-based integers.
- drop=True prevents the old index from being added as a separate column.
- inplace=True ensures the original DataFrame is modified directly.
When to Use reset_index
- Removing Unnecessary Indexes: After filtering or manipulating rows, you may end up with non-sequential or unwanted indexes.
- Default Indexing: Use it when you want to convert the DataFrame back to its default integer index, especially after setting custom indexes.
Dropping the index column is a simple and efficient way to reset your DataFrame's index. This method is commonly used when cleaning or reshaping data before analysis.
Related articles: