Kruskal's Algorithm (Simple Implementation for Adjacency Matrix)
Below are the steps for finding MST using Kruskal's algorithm
- Sort all the edges in non-decreasing order of their weight.
- Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it.
- Repeat step#2 until there are (V-1) edges in the spanning tree.
We have discussed one implementation of Kruskal's algorithm in previous post. In this post, a simpler implementation for adjacency matrix is discussed.
Implementation:
// Simple C++ implementation for Kruskal's
// algorithm
#include <bits/stdc++.h>
using namespace std;
#define V 5
int parent[V];
// Find set of vertex i
int find(int i)
{
while (parent[i] != i)
i = parent[i];
return i;
}
// Does union of i and j. It returns
// false if i and j are already in same
// set.
void union1(int i, int j)
{
int a = find(i);
int b = find(j);
parent[a] = b;
}
// Finds MST using Kruskal's algorithm
void kruskalMST(int cost[][V])
{
int mincost = 0; // Cost of min MST.
// Initialize sets of disjoint sets.
for (int i = 0; i < V; i++)
parent[i] = i;
// Include minimum weight edges one by one
int edge_count = 0;
while (edge_count < V - 1) {
int min = INT_MAX, a = -1, b = -1;
for (int i = 0; i < V; i++) {
for (int j = 0; j < V; j++) {
if (find(i) != find(j) && cost[i][j] < min) {
min = cost[i][j];
a = i;
b = j;
}
}
}
union1(a, b);
printf("Edge %d:(%d, %d) cost:%d \n",
edge_count++, a, b, min);
mincost += min;
}
printf("\n Minimum cost= %d \n", mincost);
}
// driver program to test above function
int main()
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
int cost[][V] = {
{ INT_MAX, 2, INT_MAX, 6, INT_MAX },
{ 2, INT_MAX, 3, 8, 5 },
{ INT_MAX, 3, INT_MAX, INT_MAX, 7 },
{ 6, 8, INT_MAX, INT_MAX, 9 },
{ INT_MAX, 5, 7, 9, INT_MAX },
};
// Print the solution
kruskalMST(cost);
return 0;
}
// Simple Java implementation for Kruskal's
// algorithm
import java.util.*;
class GFG
{
static int V = 5;
static int[] parent = new int[V];
static int INF = Integer.MAX_VALUE;
// Find set of vertex i
static int find(int i)
{
while (parent[i] != i)
i = parent[i];
return i;
}
// Does union of i and j. It returns
// false if i and j are already in same
// set.
static void union1(int i, int j)
{
int a = find(i);
int b = find(j);
parent[a] = b;
}
// Finds MST using Kruskal's algorithm
static void kruskalMST(int cost[][])
{
int mincost = 0; // Cost of min MST.
// Initialize sets of disjoint sets.
for (int i = 0; i < V; i++)
parent[i] = i;
// Include minimum weight edges one by one
int edge_count = 0;
while (edge_count < V - 1)
{
int min = INF, a = -1, b = -1;
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
{
if (find(i) != find(j) && cost[i][j] < min)
{
min = cost[i][j];
a = i;
b = j;
}
}
}
union1(a, b);
System.out.printf("Edge %d:(%d, %d) cost:%d \n",
edge_count++, a, b, min);
mincost += min;
}
System.out.printf("\n Minimum cost= %d \n", mincost);
}
// Driver code
public static void main(String[] args)
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
int cost[][] = {
{ INF, 2, INF, 6, INF },
{ 2, INF, 3, 8, 5 },
{ INF, 3, INF, INF, 7 },
{ 6, 8, INF, INF, 9 },
{ INF, 5, 7, 9, INF },
};
// Print the solution
kruskalMST(cost);
}
}
// This code contributed by Rajput-Ji
# Python implementation for Kruskal's
# algorithm
# Find set of vertex i
def find(i):
while parent[i] != i:
i = parent[i]
return i
# Does union of i and j. It returns
# false if i and j are already in same
# set.
def union(i, j):
a = find(i)
b = find(j)
parent[a] = b
# Finds MST using Kruskal's algorithm
def kruskalMST(cost):
mincost = 0 # Cost of min MST
# Initialize sets of disjoint sets
for i in range(V):
parent[i] = i
# Include minimum weight edges one by one
edge_count = 0
while edge_count < V - 1:
min = INF
a = -1
b = -1
for i in range(V):
for j in range(V):
if find(i) != find(j) and cost[i][j] < min:
min = cost[i][j]
a = i
b = j
union(a, b)
print('Edge {}:({}, {}) cost:{}'.format(edge_count, a, b, min))
edge_count += 1
mincost += min
print("Minimum cost= {}".format(mincost))
# Driver code
# Let us create the following graph
# 2 3
# (0)--(1)--(2)
# | / \ |
# 6| 8/ \5 |7
# | / \ |
# (3)-------(4)
# 9
V = 5
parent = [i for i in range(V)]
INF = float('inf')
cost = [[INF, 2, INF, 6, INF],
[2, INF, 3, 8, 5],
[INF, 3, INF, INF, 7],
[6, 8, INF, INF, 9],
[INF, 5, 7, 9, INF]]
# Print the solution
kruskalMST(cost)
# This code is contributed by ng24_7
// Simple C# implementation for Kruskal's
// algorithm
using System;
class GFG
{
static int V = 5;
static int[] parent = new int[V];
static int INF = int.MaxValue;
// Find set of vertex i
static int find(int i)
{
while (parent[i] != i)
i = parent[i];
return i;
}
// Does union of i and j. It returns
// false if i and j are already in same
// set.
static void union1(int i, int j)
{
int a = find(i);
int b = find(j);
parent[a] = b;
}
// Finds MST using Kruskal's algorithm
static void kruskalMST(int [,]cost)
{
int mincost = 0; // Cost of min MST.
// Initialize sets of disjoint sets.
for (int i = 0; i < V; i++)
parent[i] = i;
// Include minimum weight edges one by one
int edge_count = 0;
while (edge_count < V - 1)
{
int min = INF, a = -1, b = -1;
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
{
if (find(i) != find(j) && cost[i, j] < min)
{
min = cost[i, j];
a = i;
b = j;
}
}
}
union1(a, b);
Console.Write("Edge {0}:({1}, {2}) cost:{3} \n",
edge_count++, a, b, min);
mincost += min;
}
Console.Write("\n Minimum cost= {0} \n", mincost);
}
// Driver code
public static void Main(String[] args)
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
int [,]cost = {
{ INF, 2, INF, 6, INF },
{ 2, INF, 3, 8, 5 },
{ INF, 3, INF, INF, 7 },
{ 6, 8, INF, INF, 9 },
{ INF, 5, 7, 9, INF },
};
// Print the solution
kruskalMST(cost);
}
}
/* This code contributed by PrinciRaj1992 */
<script>
// Simple Javascript implementation for Kruskal's
// algorithm
var V = 5;
var parent = Array(V).fill(0);
var INF = 1000000000;
// Find set of vertex i
function find(i)
{
while (parent[i] != i)
i = parent[i];
return i;
}
// Does union of i and j. It returns
// false if i and j are already in same
// set.
function union1(i, j)
{
var a = find(i);
var b = find(j);
parent[a] = b;
}
// Finds MST using Kruskal's algorithm
function kruskalMST(cost)
{
var mincost = 0; // Cost of min MST.
// Initialize sets of disjoint sets.
for (var i = 0; i < V; i++)
parent[i] = i;
// Include minimum weight edges one by one
var edge_count = 0;
while (edge_count < V - 1)
{
var min = INF, a = -1, b = -1;
for (var i = 0; i < V; i++)
{
for (var j = 0; j < V; j++)
{
if (find(i) != find(j) && cost[i][j] < min)
{
min = cost[i][j];
a = i;
b = j;
}
}
}
union1(a, b);
document.write(`Edge ${edge_count++}:(${a},
${b}) cost:${min} <br>`);
mincost += min;
}
document.write(`<br> Minimum cost= ${mincost} <br>`);
}
// Driver code
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
var cost = [
[INF, 2, INF, 6, INF],
[2, INF, 3, 8, 5],
[INF, 3, INF, INF, 7],
[6, 8, INF, INF, 9],
[INF, 5, 7, 9, INF]];
// Print the solution
kruskalMST(cost);
</script>
Output
Edge 0:(0, 1) cost:2 Edge 1:(1, 2) cost:3 Edge 2:(1, 4) cost:5 Edge 3:(0, 3) cost:6 Minimum cost= 16
Time Complexity:
The time complexity of Kruskal's algorithm using the Union-Find algorithm for finding the cycle and sorting the edges is O(E log E + E log V), where E is the number of edges and V is the number of vertices in the graph.
Space Complexity:
The space complexity of the program is O(V), where V is the number of vertices in the graph.
Note that the above solution is not efficient. The idea is to provide a simple implementation for adjacency matrix representations. Please see below for efficient implementations.
Kruskal’s Minimum Spanning Tree Algorithm | Greedy Algo-2
Kruskal’s Minimum Spanning Tree using STL in C++