Longest subarray of an array which is a subsequence in another array
Given two arrays arr1[] and arr2[], the task is to find the longest subarray of arr1[] which is a subsequence of arr2[].
Examples:
Input: arr1[] = {4, 2, 3, 1, 5, 6}, arr2[] = {3, 1, 4, 6, 5, 2}
Output: 3
Explanation: The longest subarray of arr1[] which is a subsequence in arr2[] is {3, 1, 5}Input: arr1[] = {3, 2, 4, 7, 1, 5, 6, 8, 10, 9}, arr2[] = {9, 2, 4, 3, 1, 5, 6, 8, 10, 7}
Output: 5
Explanation: The longest subarray in arr1[] which is a subsequence in arr2[] is {1, 5, 6, 8, 10}.
Approach: The idea is to use Dynamic Programming to solve this problem. Follow the steps below to solve the problem:
- Initialize a DP[][] table, where DP[i][j] stores the length of the longest subarray up to the ith index in arr1[] which is a subsequence in arr2[] up to the jth index.
- Now, traverse over both the arrays and perform the following:
- Case 1: If arr1[i] and arr2[j] are equal, add 1 to DP[i - 1][j - 1] as arr1[i] and arr2[j] contribute to the required length of the longest subarray.
- Case 2: If arr1[i] and arr2[j] are not equal, set DP[i][j] = DP[i - 1][j].
- Finally, print the maximum value present in DP[][] table as the required answer.
Below is the implementation of the above approach:
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the length of the
// longest subarray in arr1[] which
// is a subsequence in arr2[]
int LongSubarrSeq(int arr1[], int arr2[], int M, int N)
{
// Length of the array arr1[]
// Length of the required
// longest subarray
int maxL = 0;
// Initialize DP[]array
int DP[M + 1][N + 1];
// Traverse array arr1[]
for (int i = 1; i <= M; i++)
{
// Traverse array arr2[]
for (int j = 1; j <= N; j++)
{
if (arr1[i - 1] == arr2[j - 1])
{
// arr1[i - 1] contributes to
// the length of the subarray
DP[i][j] = 1 + DP[i - 1][j - 1];
}
// Otherwise
else
{
DP[i][j] = DP[i][j - 1];
}
}
}
// Find the maximum value
// present in DP[][]
for (int i = 1; i <= M; i++)
{
for (int j = 1; j <= N; j++)
{
maxL = max(maxL, DP[i][j]);
}
}
// Return the result
return maxL;
}
// Driver Code
int main()
{
int arr1[] = { 4, 2, 3, 1, 5, 6 };
int M = sizeof(arr1) / sizeof(arr1[0]);
int arr2[] = { 3, 1, 4, 6, 5, 2 };
int N = sizeof(arr2) / sizeof(arr2[0]);
// Function call to find the length
// of the longest required subarray
cout << LongSubarrSeq(arr1, arr2, M, N) <<endl;
return 0;
}
// This code is contributed by code_hunt.
// Java program
// for the above approach
import java.io.*;
class GFG {
// Function to find the length of the
// longest subarray in arr1[] which
// is a subsequence in arr2[]
private static int LongSubarrSeq(
int[] arr1, int[] arr2)
{
// Length of the array arr1[]
int M = arr1.length;
// Length of the array arr2[]
int N = arr2.length;
// Length of the required
// longest subarray
int maxL = 0;
// Initialize DP[]array
int[][] DP = new int[M + 1][N + 1];
// Traverse array arr1[]
for (int i = 1; i <= M; i++) {
// Traverse array arr2[]
for (int j = 1; j <= N; j++) {
if (arr1[i - 1] == arr2[j - 1]) {
// arr1[i - 1] contributes to
// the length of the subarray
DP[i][j] = 1 + DP[i - 1][j - 1];
}
// Otherwise
else {
DP[i][j] = DP[i][j - 1];
}
}
}
// Find the maximum value
// present in DP[][]
for (int i = 1; i <= M; i++) {
for (int j = 1; j <= N; j++) {
maxL = Math.max(maxL, DP[i][j]);
}
}
// Return the result
return maxL;
}
// Driver Code
public static void main(String[] args)
{
int[] arr1 = { 4, 2, 3, 1, 5, 6 };
int[] arr2 = { 3, 1, 4, 6, 5, 2 };
// Function call to find the length
// of the longest required subarray
System.out.println(LongSubarrSeq(arr1, arr2));
}
}
# Python program
# for the above approach
# Function to find the length of the
# longest subarray in arr1 which
# is a subsequence in arr2
def LongSubarrSeq(arr1, arr2):
# Length of the array arr1
M = len(arr1);
# Length of the array arr2
N = len(arr2);
# Length of the required
# longest subarray
maxL = 0;
# Initialize DParray
DP = [[0 for i in range(N + 1)] for j in range(M + 1)];
# Traverse array arr1
for i in range(1, M + 1):
# Traverse array arr2
for j in range(1, N + 1):
if (arr1[i - 1] == arr2[j - 1]):
# arr1[i - 1] contributes to
# the length of the subarray
DP[i][j] = 1 + DP[i - 1][j - 1];
# Otherwise
else:
DP[i][j] = DP[i][j - 1];
# Find the maximum value
# present in DP
for i in range(M + 1):
# Traverse array arr2
for j in range(1, N + 1):
maxL = max(maxL, DP[i][j]);
# Return the result
return maxL;
# Driver Code
if __name__ == '__main__':
arr1 = [4, 2, 3, 1, 5, 6];
arr2 = [3, 1, 4, 6, 5, 2];
# Function call to find the length
# of the longest required subarray
print(LongSubarrSeq(arr1, arr2));
# This code contributed by shikhasingrajput
// C# program for the above approach
using System;
class GFG{
// Function to find the length of the
// longest subarray in arr1[] which
// is a subsequence in arr2[]
private static int LongSubarrSeq(int[] arr1,
int[] arr2)
{
// Length of the array arr1[]
int M = arr1.Length;
// Length of the array arr2[]
int N = arr2.Length;
// Length of the required
// longest subarray
int maxL = 0;
// Initialize DP[]array
int[,] DP = new int[M + 1, N + 1];
// Traverse array arr1[]
for(int i = 1; i <= M; i++)
{
// Traverse array arr2[]
for(int j = 1; j <= N; j++)
{
if (arr1[i - 1] == arr2[j - 1])
{
// arr1[i - 1] contributes to
// the length of the subarray
DP[i, j] = 1 + DP[i - 1, j - 1];
}
// Otherwise
else
{
DP[i, j] = DP[i, j - 1];
}
}
}
// Find the maximum value
// present in DP[][]
for(int i = 1; i <= M; i++)
{
for(int j = 1; j <= N; j++)
{
maxL = Math.Max(maxL, DP[i, j]);
}
}
// Return the result
return maxL;
}
// Driver Code
static public void Main()
{
int[] arr1 = { 4, 2, 3, 1, 5, 6 };
int[] arr2 = { 3, 1, 4, 6, 5, 2 };
// Function call to find the length
// of the longest required subarray
Console.WriteLine(LongSubarrSeq(arr1, arr2));
}
}
// This code is contributed by susmitakundugoaldanga
<script>
// javascript program of the above approach
// Function to find the length of the
// longest subarray in arr1[] which
// is a subsequence in arr2[]
function LongSubarrSeq(
arr1, arr2)
{
// Length of the array arr1[]
let M = arr1.length;
// Length of the array arr2[]
let N = arr2.length;
// Length of the required
// longest subarray
let maxL = 0;
// Initialize DP[]array
let DP = new Array(M + 1);
// Loop to create 2D array using 1D array
for (var i = 0; i < DP.length; i++) {
DP[i] = new Array(2);
}
for (var i = 0; i < DP.length; i++) {
for (var j = 0; j < DP.length; j++) {
DP[i][j] = 0;
}
}
// Traverse array arr1[]
for (let i = 1; i <= M; i++) {
// Traverse array arr2[]
for (let j = 1; j <= N; j++) {
if (arr1[i - 1] == arr2[j - 1]) {
// arr1[i - 1] contributes to
// the length of the subarray
DP[i][j] = 1 + DP[i - 1][j - 1];
}
// Otherwise
else {
DP[i][j] = DP[i][j - 1];
}
}
}
// Find the maximum value
// present in DP[][]
for (let i = 1; i <= M; i++) {
for (let j = 1; j <= N; j++) {
maxL = Math.max(maxL, DP[i][j]);
}
}
// Return the result
return maxL;
}
// Driver Code
let arr1 = [ 4, 2, 3, 1, 5, 6 ];
let arr2 = [ 3, 1, 4, 6, 5, 2 ];
// Function call to find the length
// of the longest required subarray
document.write(LongSubarrSeq(arr1, arr2));
</script>
Output
3
Time Complexity: O(M * N)
Auxiliary Space: O(M * N)
Efficient Approach: Space optimization: In the previous approach the current value dp[i][j] only depends upon the current and previous row values of DP. So to optimize the space complexity we use a single 1D array to store the computations.
Implementation steps:
- Create a 1D vector dp of size n+1.
- Initialize a variable maxi to store the final answer and update it by iterating through the Dp.
- Set a base case by initializing the values of DP.
- Now iterate over subproblems with the help of a nested loop and get the current value from previous computations.
- Now Create variables prev, temp used to store the previous values from previous computations.
- After every iteration assign the value of temp to temp for further iteration.
- At last return and print the final answer stored in maxi.
Implementation:
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the length of the
// longest subarray in arr1[]
// which is a subsequence in arr2[]
int LongSubarrSeq(int arr1[], int arr2[], int M, int N)
{
// to store final result
int maxL = 0;
// to store previous computations
// Initialize DP[] vector
vector<int> DP(N + 1, 0);
// iterate over subproblems to get the
// current value from previous computations
for (int i = 1; i <= M; i++) {
int prev = 0;
for (int j = 1; j <= N; j++) {
// Store current DP[j] value
int temp = DP[j];
if (arr1[i - 1] == arr2[j - 1]) {
DP[j] = 1 + prev;
maxL = max(maxL, DP[j]);
}
else {
DP[j] = DP[j - 1];
}
// Update previous DP[j] value
prev = temp;
}
}
// Return final answer
return maxL;
}
// Driver Code
int main()
{
int arr1[] = { 4, 2, 3, 1, 5, 6 };
int M = sizeof(arr1) / sizeof(arr1[0]);
int arr2[] = { 3, 1, 4, 6, 5, 2 };
int N = sizeof(arr2) / sizeof(arr2[0]);
cout << LongSubarrSeq(arr1, arr2, M, N);
return 0;
}
// Java program for the above approach
import java.util.*;
public class Main {
// Function to find the length of the
// longest subarray in arr1[]
// which is a subsequence in arr2[]
static int LongSubarrSeq(int arr1[], int arr2[], int M, int N)
{
// to store final result
int maxL = 0;
// to store previous computations
// Initialize DP[] vector
int DP[] = new int[N + 1];
Arrays.fill(DP, 0);
// iterate over subproblems to get the
// current value from previous computations
for (int i = 1; i <= M; i++) {
int prev = 0;
for (int j = 1; j <= N; j++) {
// Store current DP[j] value
int temp = DP[j];
if (arr1[i - 1] == arr2[j - 1]) {
DP[j] = 1 + prev;
maxL = Math.max(maxL, DP[j]);
}
else {
DP[j] = DP[j - 1];
}
// Update previous DP[j] value
prev = temp;
}
}
// Return final answer
return maxL;
}
// Driver Code
public static void main(String[] args)
{
int arr1[] = { 4, 2, 3, 1, 5, 6 };
int M = arr1.length;
int arr2[] = { 3, 1, 4, 6, 5, 2 };
int N = arr2.length;
System.out.print(LongSubarrSeq(arr1, arr2, M, N));
}
}
# Function to find the length of the
# longest subarray in arr1[]
# which is a subsequence in arr2[]
def LongSubarrSeq(arr1, arr2, M, N):
# To store the final result
maxL = 0
# To store previous computations
# Initialize DP[] list
DP = [0] * (N + 1)
# Iterate over subproblems to get the
# current value from previous computations
for i in range(1, M + 1):
prev = 0
for j in range(1, N + 1):
# Store current DP[j] value
temp = DP[j]
if arr1[i - 1] == arr2[j - 1]:
DP[j] = 1 + prev
maxL = max(maxL, DP[j])
else:
DP[j] = DP[j - 1]
# Update previous DP[j] value
prev = temp
# Return the final answer
return maxL
# Driver Code
if __name__ == "__main__":
arr1 = [4, 2, 3, 1, 5, 6]
M = len(arr1)
arr2 = [3, 1, 4, 6, 5, 2]
N = len(arr2)
print(LongSubarrSeq(arr1, arr2, M, N))
using System;
class Program
{
// Function to find the length of the
// longest subarray in arr1[]
// which is a subsequence in arr2[]
static int LongSubarrSeq(int[] arr1, int[] arr2, int M, int N)
{
// to store final result
int maxL = 0;
// to store previous computations
// Initialize DP[] array
int[] DP = new int[N + 1];
// iterate over subproblems to get the
// current value from previous computations
for (int i = 1; i <= M; i++)
{
int prev = 0;
for (int j = 1; j <= N; j++)
{
// Store current DP[j] value
int temp = DP[j];
if (arr1[i - 1] == arr2[j - 1])
{
DP[j] = 1 + prev;
maxL = Math.Max(maxL, DP[j]);
}
else
{
DP[j] = DP[j - 1];
}
// Update previous DP[j] value
prev = temp;
}
}
// Return final answer
return maxL;
}
// Driver Code
static void Main()
{
int[] arr1 = { 4, 2, 3, 1, 5, 6 };
int M = arr1.Length;
int[] arr2 = { 3, 1, 4, 6, 5, 2 };
int N = arr2.Length;
Console.WriteLine(LongSubarrSeq(arr1, arr2, M, N));
}
}
// Function to find the length of the
// longest subarray in arr1[]
// which is a subsequence in arr2[]
function LongSubarrSeq(arr1, arr2, M, N) {
// to store final result
let maxL = 0;
// to store previous computations
// Initialize DP[] array
let DP = new Array(N + 1).fill(0);
// iterate over subproblems to get the
// current value from previous computations
for (let i = 1; i <= M; i++) {
let prev = 0;
for (let j = 1; j <= N; j++) {
// Store current DP[j] value
let temp = DP[j];
if (arr1[i - 1] === arr2[j - 1]) {
DP[j] = 1 + prev;
maxL = Math.max(maxL, DP[j]);
} else {
DP[j] = DP[j - 1];
}
// Update previous DP[j] value
prev = temp;
}
}
// Return final answer
return maxL;
}
// Driver Code
let arr1 = [4, 2, 3, 1, 5, 6];
let M = arr1.length;
let arr2 = [3, 1, 4, 6, 5, 2];
let N = arr2.length;
console.log(LongSubarrSeq(arr1, arr2, M, N));
Output
3
Time Complexity: O(M * N)
Auxiliary Space: O(N)
Related Topic: Subarrays, Subsequences, and Subsets in Array