Matplotlib.axis.Axis.set_transform() function in Python
Last Updated :
05 Jun, 2020
Improve
Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.
Matplotlib.axis.Axis.set_transform() Function
The Axis.set_transform() function in axis module of matplotlib library is used to set the artist transform.
Syntax: Axis.set_transform(self, t)
Parameters: This method accepts the following parameters.
- t: This parameter is the Transform.
Return value: This method does not return any value.
Below examples illustrate the matplotlib.axis.Axis.set_transform() function in matplotlib.axis:
Example 1:
# Implementation of matplotlib function
from matplotlib.axis import Axis
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
delta = 0.5
x = y = np.arange(-2.0, 4.0, delta)
X, Y = np.meshgrid(x**2, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2)
transform = mtransforms.Affine2D().rotate_deg(30)
fig, ax = plt.subplots()
im = ax.imshow(Z, interpolation ='none',
origin ='lower',
extent =[-2, 4, -3, 2],
clip_on = True)
trans_data = transform + ax.transData
Axis.set_transform(im, trans_data)
x1, x2, y1, y2 = im.get_extent()
ax.plot([x1, x2, x2, x1, x1],
[y1, y1, y2, y2, y1],
"ro-",
transform = trans_data)
ax.set_xlim(-5, 5)
ax.set_ylim(-4, 4)
fig.suptitle('matplotlib.axis.Axis.set_transform() \
function Example\n', fontweight ="bold")
plt.show()
Output:

Example 2:
# Implementation of matplotlib function
from matplotlib.axis import Axis
import matplotlib.pyplot as plt
from matplotlib import collections, colors, transforms
import numpy as np
nverts = 50
npts = 100
r = np.arange(nverts)
theta = np.linspace(0, 2 * np.pi, nverts)
xx = r * np.sin(theta)
yy = r * np.cos(theta)
spiral = np.column_stack([xx, yy])
rs = np.random.RandomState(19680801)
xyo = rs.randn(npts, 2)
colors = [colors.to_rgba(c)
for c in plt.rcParams['axes.prop_cycle'].by_key()['color']]
fig, ax1 = plt.subplots()
col = collections.RegularPolyCollection(
7, sizes = np.abs(xx) * 10.0,
offsets = xyo,
transOffset = ax1.transData)
trans = transforms.Affine2D().scale(fig.dpi / 72.0)
Axis.set_transform(col, trans)
ax1.add_collection(col, autolim = True)
col.set_color(colors)
fig.suptitle('matplotlib.axis.Axis.set_transform() \
function Example\n', fontweight ="bold")
plt.show()
Output:
