Numpy MaskedArray.masked_invalid() function | Python
Last Updated :
27 Sep, 2019
Improve
In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The
Python3
Python3
numpy.ma
module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arrays that may have missing or invalid entries.
numpy.MaskedArray.masked_invalid()
function is used to mask an array where invalid values occur (NaNs or infs).This function is a shortcut to masked_where
, with condition = ~(numpy.isfinite(arr))
.
Syntax : numpy.ma.masked_invalid(arr, copy=True)
Parameters:
arr : [ndarray] Input array which we want to mask.
copy : [bool] If True (default) make a copy of arr in the result. If False modify arr in place and return a view.
Return : [ MaskedArray] The resultant array after masking.
Code #1 :
# Python program explaining
# numpy.MaskedArray.masked_invalid() method
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
# creating input array with invalid values
in_arr = geek.array([1, 2, geek.nan, -1, geek.inf])
print ("Input array : ", in_arr)
# applying MaskedArray.masked_invalid
# methods to input array
mask_arr = ma.masked_invalid(in_arr)
print ("Masked array : ", mask_arr)
Output:
Code #2 :
Input array : [ 1. 2. nan -1. inf] Masked array : [1.0 2.0 -- -1.0 --]
# Python program explaining
# numpy.MaskedArray.masked_invalid() method
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
# creating input array with invalid element
in_arr = geek.array([5e8, 3e-5, geek.nan, 4e4, 5e2])
print ("Input array : ", in_arr)
# applying MaskedArray.masked_invalid
# methods to input array
mask_arr = ma.masked_invalid(in_arr)
print ("Masked array : ", mask_arr)
Output:
Input array : [5.e+08 3.e-05 nan 4.e+04 5.e+02] Masked array : [500000000.0 3e-05 -- 40000.0 500.0]