Pandas DataFrame dtypes Property | Find DataType of Columns
Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns).
Pandas DataFrame.dtypes attribute returns a series with the data type of each column.
Example:
import pandas as pd
df = pd.DataFrame({'Weight': [45, 88, 56, 15, 71],
'Name': ['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'],
'Age': [14, 25, 55, 8, 21]})
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
df.index = index_
print(df)
Output:

Syntax
Syntax: DataFrame.dtypes
Parameter : None
Returns : data type of each column
Examples
Let's check some examples of how to find the data type of each column of a DataFrame using the dtypes property of DataFrame.
Example 1:
Now we will use the dtypes attribute to find out the data type of each column in the given DataFrame.
# return the dtype of each column
result = df.dtypes
# Print the result
print(result)
Output:
As we can see in the output, the DataFrame.dtypes attribute has successfully returned the data types of each column in the given Dataframe.

Example 2:
Use the DataFrame dtypes attribute to find out the data type (dtype) of each column in the given DataFrame.
# importing pandas as pd
import pandas as pd
# Creating the DataFrame
df = pd.DataFrame({& quot
A": [12, 4, 5, None, 1],
& quot
B"
: [7, 2, 54, 3, None],
& quot
C"
: [20, 16, 11, 3, 8],
& quot
D"
: [14, 3, None, 2, 6]})
# Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
# Set the index
df.index = index_
# Print the DataFrame
print(df)
Output:

Now we will use DataFrame.dtypes attribute to find out the data type of each column in the given DataFrame.
# return the dtype of each column
result = df.dtypes
# Print the result
print(result)
Output:
As we can see in the output, the DataFrame.dtypes attribute has successfully returned the data types of each column in the given DataFrame.
Check More Properties of DataFrame