Open In App

Properties of Definite Integrals

Last Updated : 25 Jul, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Properties of Definite Integrals: An integral that has a limit is known as a definite integral. It has an upper limit and a lower limit. It is represented as 

\int_{a}^{b}f(x) = F(b) − F(a)

There are many properties regarding definite integral. We will discuss each property one by one with proof.

Definite Integrals

Definite integrals are used to compute the area under a curve within a given interval. They have several important properties that simplify calculations and provide deeper insights into the behavior of functions.

Read More: Definite Integrals

Here are some key properties of definite integrals:

Properties of Definite Integrals

Various properties of the definite integrals are added below,

Property 1: \int_{a}^{b} f(x) dx = \int_{a}^{b} f(y) dy

Proof:

\int_{a}^{b}      f(x) dx.......(1)

Suppose x = y

           dx = dy

Putting this in equation (1)

\int_{a}^{b} f(y) dy

Property 2: \int_{a}^{b}      f(x) dx = -\int_{b}^{a}      f(x) dx

Proof:

\int_{a}^{b}      f(x) dx = F(b) - F(a)........(1)

\int_{b}^{a}      f(x) dx = F(a) - F(b).......... (2)

From (1) and (2) 

We can derive \int_{a}^{b}      f(x) dx = -\int_{b}^{a}      f(x) dx

Property 3: \int_{a}^{b}     f(x) dx = \int_{a}^{p}     f(x) dx + \int_{p}^{b}     f(x) dx

Proof:

\int_{a}^{b}      f(x) dx = F(b) - F(a) ...........(1)

\int_{a}^{p}      f(x) dx = F(p) - F(a) ...........(2)

\int_{p}^{b}      f(x) dx = F(b) - F(p) ...........(3)

From (2) and (3)

\int_{a}^{p}     f(x) dx + \int_{p}^{b}     f(x) dx = F(p) - F(a) + F(b) - F(p)

\int_{a}^{p}     f(x) dx + \int_{p}^{b}     f(x) dx = F(b) - F(a) = \int_{a}^{b}     f(x) dx    

Hence, it is Proved.

Property 4.1: \int_{a}^{b}      f(x) dx = \int_{a}^{b}     f(a + b - x) dx

Proof:

Suppose 

a + b - x = y............(1)

-dx = dy 

From (1) you can see 

when x = a  

y = a + b - a

y = b

and when x = b

y = a + b - b

y = a

Replacing by these values he integration on right side becomes -\int_{b}^{a}      f(y)dy

From property 1 and property 2 you can say that 

\int_{a}^{b}      f(x) dx = \int_{a}^{b}     f(a + b - x) dx  

Property 4.2: If the value of a is given as 0 then property 4.1 can be written as

 \int_{0}^{b}      f(x) dx = \int_{0}^{b}     f(b - x) dx

Property 5: \int_{0}^{2a}      f(x) dx = \int_{0}^{a}     f(x) dx + \int_{0}^{a}     f(2a - x) dx

Proof:

We can write \int_{0}^{2a}      f(x) dx as

\int_{0}^{2a}      f(x) dx = \int_{0}^{a}     f(x) dx + \int_{a}^{2a}     f(x) dx  .............. (1)

I = I1 + I

(from property 3)

Suppose 2a - x = y

-dx = dy

Also when x = 0

y = 2a, and when x = a

y = 2a - a = a

So, \int_{0}^{a}      f(2a - x)dx  can be written as 

-\int_{2a}^{a}      f(y) dy = I2

Replacing equation (1) with the value of I2 we get 

\int_{0}^{2a}      f(x) dx = \int_{0}^{a}     f(x) dx + \int_{0}^{a}     f(2a - x) dx

Property 6 : \int_{0}^{2a} f(x) dx = 2\int_{0}^{a}f(x) dx; if f(2a - x) = f(x)

                                                      =  0; if f(2a - x) = -f(x) 

Proof: 

From property 5 we can write \int_{0}^{2a}      f(x) dx as

\int_{0}^{2a}      f(x) dx =\int_{0}^{a}     f(x) dx + \int_{0}^{a}     f(2a - x) dx  .............(1)

Part  1: If f(2a - x) = f(x) 

Then equation (1) can be written as 

\int_{0}^{2a}     f(x) dx =\int_{0}^{a}     f(x) dx + \int_{0}^{a}     f(x) dx

This can be further written as 

\int_{0}^{2a}      f(x) dx = 2 \int_{0}^{a}     f(x) dx

Part  2: If f(2a - x) = -f(x)

Then equation (1) can be written as 

 \int_{0}^{2a}      f(x) dx= \int_{0}^{a}     f(x) dx - \int_{0}^{a}     f(x) dx

This can be further written as 

\int_{0}^{2a}      f(x) dx= 0

Property 7: \int_{-a}^{a} f(x) dx = 2\int_{0}^{a}f(x) dx; if a function is even i.e. f(-x) = f(x)

                                                = 0; if a function is odd i.e. f(-x) = -f(x)

Proof: 

From property 3 we can write 

\int_{-a}^{a}      f(x) dx as 

\int_{-a}^{a}      f(x) dx = \int_{-a}^{0}     f(x) dx + \int_{0}^{a}     f(x) dx  .........(1)

Suppose 

\int_{-a}^{0}      f(x) dx = I1 ......(2)

Now, assume x = -y

So, dx = -dy

And also when x = -a then

y= -(-a) = a

and when x = 0 then, y = 0

Putting these values in equation (2) we get

I1 -\int_{a}^{0}      f(-y)dy

Using property 2, I1 can be written as 

I1\int_{0}^{a}      f(-y)dy

and using property 1 I1 can be written  as 

I1 \int_{0}^{a}      f(-x)dx

Putting value of I1 in equation (1), we get

\int_{-a}^{a}      f(x) dx = \int_{0}^{a}     f(-x) dx +\int_{0}^{a}     f(x) dx   ..........(3)

Part 1: When f(-x) = f(x)

Then equation(3) becomes

\int_{-a}^{a}      f(x) dx = \int_{0}^{a}     f(x) dx + \int_{0}^{a}     f(x) dx

\int_{-a}^{a}      f(x) dx = 2\int_{0}^{a}     f(x) dx 

Part  2: When f(-x) = -f(x)

Then equation 3 becomes

\int_{-a}^{a}      f(x) dx = -\int_{0}^{a}     f(x) dx +\int_{0}^{a}     f(x) d

\int_{-a}^{a}      f(x)dx = 0

Example on Properties of Definite Integrals

Example 1: I = \int_{0}^{1}      x(1 - x)99 dx

Solution:

Using  property  4.2 he given question can be written as 

\int_{0}^{1}      (1 - x) [1 - (1 - x)]99 dx

\int_{0}^{1}      (1 - x) [1 - 1 + x]99 dx

 \int_{0}^{1}     (1 - x)x99 dx

\begin{bmatrix} \frac{x^{100}}{100} - \frac{x^{101}}{101} \end{bmatrix}_{0}^{1}

= 1/100 - 1/101

= 1 / 10100

Example 2: I = \int_{\frac{-1}{2}}^{\frac{-1}{2}}      cos(x) log \begin{vmatrix} \frac{1+x}{1-x} \end{vmatrix}

Solution:

f(x) = cos(x) log \begin{vmatrix} \frac{1+x}{1-x} \end{vmatrix}

 f(-x) = cos(-x) log \begin{vmatrix} \frac{1-x}{1+x} \end{vmatrix}

 f(-x) = -cos(x) log \begin{vmatrix} \frac{1+x}{1-x} \end{vmatrix}

f(-x) = -f(x)

Hence the function is odd. So, Using property 

\int_{-a}^{a}      f(x)dx = 0; if a function is odd i.e. f(-x) = -f(x) 

\int_{\frac{-1}{2}}^{\frac{-1}{2}}      cos(x) log \begin{vmatrix} \frac{1+x}{1-x} \end{vmatrix}      = 0

Example 3: I = \int_{0}^{5}      [x] dx

Solution:

\int_{0}^{1}      0 dx + \int_{1}^{2}     1 dx + \int_{2}^{3}      2 dx +\int_{3}^{4}      3 dx + \int_{4}^{5}      4 dx  [using Property 3]

= 0 + [x]21 + 2[x]32  + 3[x]43 + 4[x]54 

= 0 + (2 - 1) + 2(3 - 2) + 3(4 - 3) + 4(5 - 4)

= 0 + 1 + 2 + 3 + 4

= 10

Example 4: I =  \int_{-1}^{2}      |x| dx

Solution:

\int_{-1}^{0}      (-x) dx + \int_{0}^{2}      (x) dx  [using Property 3] 

= -[x2/2]0-1 + [x2/2]2 

= -[0/2 - 1/2] + [4/2 - 0]

= 1/2 + 2

= 5/2

Example 5 : Evaluate ∫[-π to π] cos(x)dx and ∫[-π to π] sin(x)dx

Solution :

Solution:

cos(x) is even:

∫[-π to π] cos(x)dx = 2∫[0 to π] cos(x)dx = 2[sin(x)]|[0 to π] = 2(0 - 0) = 0

sin(x) is odd:

∫[-π to π] sin(x)dx = 0 (by property of odd functions)

Related Articles:

Practice Problems

1).Evaluate ∫[0 to 4] (2x + 3)dx using the properties of definite integrals.

2).If ∫[0 to 2] f(x)dx = 5 and ∫[2 to 4] f(x)dx = 7, find ∫[0 to 4] f(x)dx.

3).Calculate ∫[-1 to 1] |x|dx using the properties of even functions.

4).Given that ∫[0 to 1] f(x)dx = 2, evaluate ∫[0 to 1] [3f(x) - 2]dx.

5).Prove that ∫[0 to π/2] sin(x)dx = ∫[0 to π/2] cos(x)dx using properties of definite integrals.

6).If ∫[0 to 1] f(x)dx = 3 and ∫[0 to 1] g(x)dx = 2, calculate ∫[0 to 1] [2f(x) - g(x)]dx.

7).Show that ∫[-a to a] x³dx = 0 for any positive real number a.

8).Given ∫[0 to 1] f(x)dx = 2 and ∫[1 to 2] f(x)dx = 3, find ∫[2 to 0] f(x)dx.

9).Evaluate ∫[0 to π] sin²(x)dx using the identity sin²(x) = (1 - cos(2x))/2 and properties of definite integrals.

10).If ∫[0 to 1] f(x)dx = 4 and ∫[0 to 2] f(x)dx = 10, calculate ∫[1 to 2] f(x)dx.

Summary

Definite integrals possess several important properties that simplify calculations and analysis. These include linearity, which allows the integration of linear combinations of functions; additivity over intervals, enabling the splitting of integrals into smaller parts; reversal of limits, which changes the sign of the integral when upper and lower bounds are swapped; integration of even and odd functions over symmetric intervals; the comparison property for comparing integrals of functions with known relationships; and the mean value theorem for integrals, which relates the integral to an average function value. These properties provide powerful tools for evaluating integrals, analyzing functions, and solving various mathematical and real-world problems.


Next Article

Similar Reads