Python | Math operations for Data analysis
Last Updated :
21 Mar, 2024
Improve
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
There are some important math operations that can be performed on a pandas series to simplify data analysis using Python and save a lot of time.
s=read_csv("stock.csv", squeeze=True) #reading csv file and making series
Function | Use |
---|---|
s.sum() | Returns sum of all values in the series |
s.mean() |
Returns mean of all values in series. Equals to s.sum()/s.count() ![]()
|
s.std() | Returns standard deviation of all values |
s.min() or s.max() | Return min and max values from series |
s.idxmin() or s.idxmax() | Returns index of min or max value in series |
s.median() | Returns median of all value |
s.mode() | Returns mode of the series |
s.value_counts() |
Returns series with frequency of each value ![]()
|
s.describe() |
Returns a series with information like mean, mode, etc depending on dtype of data passed ![]()
|
Code #1:
# import pandas for reading csv file
import pandas as pd
#reading csv file
s = pd.read_csv("stock.csv", squeeze = True)
#using count function
print(s.count())
#using sum function
print(s.sum())
#using mean function
print(s.mean())
#calculation average
print(s.sum()/s.count())
#using std function
print(s.std())
#using min function
print(s.min())
#using max function
print(s.max())
#using count function
print(s.median())
#using mode function
print(s.mode())
Output:
3012 1006942.0 334.3100929614874 334.3100929614874 173.18720477113115 49.95 782.22 283.315 0 291.21
Code #2:
# import pandas for reading csv file
import pandas as pd
#reading csv file
s = pd.read_csv("stock.csv", squeeze = True)
#using describe function
print(s.describe())
#using count function
print(s.idxmax())
#using idxmin function
print(s.idxmin())
#count of elements having value 3
print(s.value_counts().head(3))
Output:
dtype: float64 count 3012.000000 mean 334.310093 std 173.187205 min 49.950000 25% 218.045000 50% 283.315000 75% 443.000000 max 782.220000 Name: Stock Price, dtype: float64 3011 11 291.21 5 288.47 3 194.80 3 Name: Stock Price, dtype: int64
Unexpected Outputs and Restrictions:
- .sum(), .mean(), .mode(), .median() and other such mathematical operations are not applicable on string or any other data type than numeric value.
- .sum() on a string series would give an unexpected output and return a string by concatenating every string.