Python | Pandas DataFrame.blocks
Last Updated :
20 Feb, 2019
Improve
Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.
Pandas
Python3
Output :
Now we will use
Python3 1==
Output :
As we can see in the output, the
Python3
Output :
Now we will use
Python3 1==
Output :
As we can see in the output, the
DataFrame.blocks
attribute is synonym for as_blocks()
function. It basically convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.
Syntax: DataFrame.blocks Parameter : None Returns : dictExample #1: Use
DataFrame.blocks
attribute to return a dictionary containing the data in blocks of separate data types.
# importing pandas as pd
import pandas as pd
# Creating the DataFrame
df = pd.DataFrame({'Weight':[45, 88, 56, 15, 71],
'Name':['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'],
'Age':[14, 25, 55, 8, 21]})
# Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
# Set the index
df.index = index_
# Print the DataFrame
print(df)

DataFrame.blocks
attribute to return the block representation of the given dataframe.
# return a dictionary
result = df.blocks
# Print the result
print(result)

DataFrame.blocks
attribute has successfully returned a dictionary containing the data of the dataframe. Homogeneous columns are places in the same block.
Example #2: Use DataFrame.blocks
attribute to return a dictionary containing the data in blocks of separate data types.
# importing pandas as pd
import pandas as pd
# Creating the DataFrame
df = pd.DataFrame({"A":[12, 4, 5, None, 1],
"B":[7, 2, 54, 3, None],
"C":[20, 16, 11, 3, 8],
"D":[14, 3, None, 2, 6]})
# Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
# Set the index
df.index = index_
# Print the DataFrame
print(df)

DataFrame.blocks
attribute to return the block representation of the given dataframe.
# return a dictionary
result = df.blocks
# Print the result
print(result)

DataFrame.blocks
attribute has successfully returned a dictionary containing the data of the dataframe. Homogeneous columns are places in the same block.