Python | Pandas dataframe.cov()
Last Updated :
16 Nov, 2018
Improve
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas
Python3
Output :
Now find the covariance among the columns of the data frame
Python3 1==
Output :
Example #2: Use
Python3
Output :
dataframe.cov()
is used to compute pairwise covariance of columns.
If some of the cells in a column contain NaN
value, then it is ignored.
Syntax: DataFrame.cov(min_periods=None) Parameters: min_periods : Minimum number of observations required per pair of columns to have a valid result. Returns: y : DataFrameExample #1: Use
cov()
function to find the covariance between the columns of the dataframe.
Note : Any non-numeric columns will be ignored.
# importing pandas as pd
import pandas as pd
# Creating the dataframe
df = pd.DataFrame({"A":[5, 3, 6, 4],
"B":[11, 2, 4, 3],
"C":[4, 3, 8, 5],
"D":[5, 4, 2, 8]})
# Print the dataframe
df

# To find the covariance
df.cov()

cov()
function to find the covariance between the columns of the dataframe which are having NaN
value.
# importing pandas as pd
import pandas as pd
# Creating the dataframe
df = pd.DataFrame({"A":[5, 3, None, 4],
"B":[None, 2, 4, 3],
"C":[4, 3, 8, 5],
"D":[5, 4, 2, None]})
# To find the covariance
df.cov()
