Python | Pandas dataframe.isna()
Last Updated :
21 Mar, 2024
Improve
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas
Python3
Lets use the
Python3
Output :
In the output, cells corresponding to the missing values contains true value else false.
Example #2: Use
Python3
Let's detect all the missing values in the series.
Python3
Output :
dataframe.isna()
function is used to detect missing values. It return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True).
Syntax: DataFrame.isna() Returns : Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.Example #1: Use
isna()
function to detect the missing values in a dataframe.
# importing pandas as pd
import pandas as pd
# Creating the dataframe
df = pd.read_csv("nba.csv")
# Print the dataframe
df

isna()
function to detect the missing values.
# detect the missing values
df.isna()

isna()
function to detect missing values in a pandas series object
# importing pandas as pd
import pandas as pd
# Creating the series
sr = pd.Series([12, 5, None, 5, None, 11])
# Print the series
sr

# to detect the missing values
sr.isna()
