Python | Pandas dataframe.max()
Last Updated :
19 Nov, 2018
Improve
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas
Python3
Let's use the
Python3 1==
Output :
Example #2: Use
Python3
Output :
dataframe.max()
function returns the maximum of the values in the given object. If the input is a series, the method will return a scalar which will be the maximum of the values in the series. If the input is a dataframe, then the method will return a series with maximum of values over the specified axis in the dataframe. By default the axis is the index axis.
Syntax: DataFrame.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Parameters : axis : {index (0), columns (1)} skipna : Exclude NA/null values when computing the result level : If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Returns : max : Series or DataFrame (if level specified)Example #1: Use
max()
function to find the maximum value over the index axis.
# importing pandas as pd
import pandas as pd
# Creating the dataframe
df = pd.DataFrame({"A":[12, 4, 5, 44, 1],
"B":[5, 2, 54, 3, 2],
"C":[20, 16, 7, 3, 8],
"D":[14, 3, 17, 2, 6]})
# Print the dataframe
df

dataframe.max()
function to find the maximum value over the index axis
# Even if we do not specify axis = 0,
# the method will return the max over
# the index axis by default
df.max(axis = 0)

max()
function on a dataframe which has Na
values. Also find the maximum over the column axis.
# importing pandas as pd
import pandas as pd
# Creating the dataframe
df = pd.DataFrame({"A":[12, 4, 5, None, 1],
"B":[7, 2, 54, 3, None],
"C":[20, 16, 11, 3, 8],
"D":[14, 3, None, 2, 6]})
# skip the Na values while finding the maximum
df.max(axis = 1, skipna = True)
