Python | Pandas dataframe.pow()
Last Updated :
22 Nov, 2018
Improve
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas
Python3
Let's create a Series
Python3 1==
Now, let's use the
Python3 1==
Output :
Example #2: Use
Python3
Output :
dataframe.pow()
function calculates the exponential power of dataframe and other, element-wise (binary operator pow). This function is essentially same as the dataframe ** other
but with a support to fill the missing values in one of the input data.
Syntax: DataFrame.pow(other, axis='columns', level=None, fill_value=None) Parameters : other : Series, DataFrame, or constant axis : For Series input, axis to match Series index on level : Broadcast across a level, matching Index values on the passed MultiIndex level fill_value : Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. **kwargs : Additional keyword arguments are passed into DataFrame.shift or Series.shift. Returns : result : DataFrameExample #1: Use
pow()
function to find the power of each element in the dataframe. Raise each element in a row to a different power using a series.
# importing pandas as pd
import pandas as pd
# Creating the dataframe
df1 = pd.DataFrame({"A":[14, 4, 5, 4, 1],
"B":[5, 2, 54, 3, 2],
"C":[20, 20, 7, 3, 8],
"D":[14, 3, 6, 2, 6]})
# Print the dataframe
df

# importing pandas as pd
import pandas as pd
# Create the Series
sr = pd.Series([2, 3, 4, 2], index =["A", "B", "C", "D"])
# Print the series
sr

dataframe.pow()
function to raise each element in a row to different power.
# find the power
df.pow(sr, axis = 1)

pow()
function to raise each element of first data frame to the power of corresponding element in the other dataframe.
# importing pandas as pd
import pandas as pd
# Creating the first dataframe
df1 = pd.DataFrame({"A":[14, 4, 5, 4, 1],
"B":[5, 2, 54, 3, 2],
"C":[20, 20, 7, 3, 8],
"D":[14, 3, 6, 2, 6]})
# Creating the second dataframe
df2 = pd.DataFrame({"A":[1, 5, 3, 4, 2],
"B":[3, 2, 4, 3, 4],
"C":[2, 2, 7, 3, 4],
"D":[4, 3, 6, 12, 7]})
# using pow() function to raise each element
# in df1 to the power of corresponding element in df2
df1.pow(df2)
