Python | Pandas dataframe.rsub()
Last Updated :
24 Nov, 2018
Improve
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas
Python3 1==
Let's create the series
Python3 1==
Lets use the
Python3 1==
Output :
Example #2: Use
Python3 1==
Lets perform
Python3 1==
Output :
dataframe.rsub()
function is used for finding the subtraction of dataframe and other, element-wise (binary operator rfloordiv). This function is essentially same as doing other - dataframe but with a support to substitute for missing data in one of the inputs.
Syntax:DataFrame.rsub(other, axis='columns', level=None, fill_value=None) Parameters : other : Series, DataFrame, or constant axis : For Series input, axis to match Series index on level : Broadcast across a level, matching Index values on the passed MultiIndex level fill_value : Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. Returns : result : DataFrameExample #1: Use
rsub()
function to subtract each element of a series to a corresponding value in a dataframe over the column axis.
# importing pandas as pd
import pandas as pd
# Creating the dataframe
df = pd.DataFrame({"A":[1, 5, 3, 4, 2],
"B":[3, 2, 4, 3, 4],
"C":[2, 2, 7, 3, 4],
"D":[4, 3, 6, 12, 7]},
index =["A1", "A2", "A3", "A4", "A5"])
# Print the dataframe
df

# importing pandas as pd
import pandas as pd
# Create the series
sr = pd.Series([12, 25, 64, 18], index =["A", "B", "C", "D"])
# Print the series
sr

dataframe.rsub()
function to subtract each element in a series with the corresponding element in the dataframe.
# equivalent to sr - df
df.rsub(sr, axis = 1)

rsub()
function to subtract each element in a dataframe with the corresponding element in other dataframe
# importing pandas as pd
import pandas as pd
# Creating the first dataframe
df1 = pd.DataFrame({"A":[1, 5, 3, 4, 2],
"B":[3, 2, 4, 3, 4],
"C":[2, 2, 7, 3, 4],
"D":[4, 3, 6, 12, 7]},
index =["A1", "A2", "A3", "A4", "A5"])
# Creating the second dataframe
df2 = pd.DataFrame({"A":[10, 11, 7, 8, 5],
"B":[21, 5, 32, 4, 6],
"C":[11, 21, 23, 7, 9],
"D":[1, 5, 3, 8, 6]},
index =["A1", "A2", "A3", "A4", "A5"])
# Print the first dataframe
print(df1)
# Print the second dataframe
print(df2)


df2 - df1
# subtract df1 from df2
df1.rsub(df2)
