Python | Pandas Series.as_matrix()
Last Updated :
27 Feb, 2019
Improve
Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.
Pandas
Python3
Output :
Python3 1==
Output :
Python3
Output :
Python3 1==
Output :
Series.as_matrix()
function is used to convert the given series or dataframe object to Numpy-array representation.
Syntax: Series.as_matrix(columns=None) Parameter : columns : If None, return all columns, otherwise, returns specified columns. Returns : values : ndarrayExample #1: Use
Series.as_matrix()
function to return the numpy-array representation of the given series object.
# importing pandas as pd
import pandas as pd
# Creating the Series
sr = pd.Series(['New York', 'Chicago', 'Toronto', 'Lisbon', 'Rio'])
# Create the Index
index_ = ['City 1', 'City 2', 'City 3', 'City 4', 'City 5']
# set the index
sr.index = index_
# Print the series
print(sr)
City 1 New York City 2 Chicago City 3 Toronto City 4 Lisbon City 5 Rio dtype: objectNow we will use
Series.as_matrix()
function to return the numpy array representation of the given series object.
# return numpy array representation
result = sr.as_matrix()
# Print the result
print(result)
['New York' 'Chicago' 'Toronto' 'Lisbon' 'Rio']As we can see in the output, the
Series.as_matrix()
function has successfully returned the numpy array representation of the given series object.
Example #2 : Use Series.as_matrix()
function to return the numpy-array representation of the given series object.
# importing pandas as pd
import pandas as pd
# Creating the Series
sr = pd.Series([11, 21, 8, 18, 65, 18, 32, 10, 5, 32, None])
# Create the Index
# apply yearly frequency
index_ = pd.date_range('2010-10-09 08:45', periods = 11, freq ='Y')
# set the index
sr.index = index_
# Print the series
print(sr)
2010-12-31 08:45:00 11.0 2011-12-31 08:45:00 21.0 2012-12-31 08:45:00 8.0 2013-12-31 08:45:00 18.0 2014-12-31 08:45:00 65.0 2015-12-31 08:45:00 18.0 2016-12-31 08:45:00 32.0 2017-12-31 08:45:00 10.0 2018-12-31 08:45:00 5.0 2019-12-31 08:45:00 32.0 2020-12-31 08:45:00 NaN Freq: A-DEC, dtype: float64Now we will use
Series.as_matrix()
function to return the numpy array representation of the given series object.
# return numpy array representation
result = sr.as_matrix()
# Print the result
print(result)
[ 11. 21. 8. 18. 65. 18. 32. 10. 5. 32. nan]As we can see in the output, the
Series.as_matrix()
function has successfully returned the numpy array representation of the given series object.