Python | Pandas Series.replace()
Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Pandas Series.replace()
function is used to replace values given in to_replace with value. The values of the Series are replaced with other values dynamically.
Syntax:
Series.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad')Parameters :
to_replace : How to find the values that will be replaced.
value : Value to replace any values matching to_replace with.
inplace : If True, in place.
limit : Maximum size gap to forward or backward fill.
regex : Whether to interpret to_replace and/or value as regular expressions
method : The method to use when for replacement, when to_replace is a scalar, list or tuple and value is None.Returns : Object after replacement.
Example #1: Use Series.replace()
function to replace some values from the given Series object.
# importing pandas as pd
import pandas as pd
# Creating the Series
sr = pd.Series([10, 25, 3, 11, 24, 6])
# Create the Index
index_ = ['Coca Cola', 'Sprite', 'Coke', 'Fanta', 'Dew', 'ThumbsUp']
# set the index
sr.index = index_
# Print the series
print(sr)
Output :
Coca Cola 10
Sprite 25
Coke 3
Fanta 11
Dew 24
ThumbsUp 6
dtype: int64
Now we will use Series.replace()
function to replace the old values with the new ones.
# replace 3 by 1000
result = sr.replace(to_replace = 3, value = 1000)
# Print the result
print(result)
Output :
Coca Cola 10
Sprite 25
Coke 1000
Fanta 11
Dew 24
ThumbsUp 6
dtype: int64
As we can see in the output, the Series.replace()
function has successfully replaced the old value with the new one.
Example #2 : Use Series.replace()
function to replace some values from the given Series object.
# importing pandas as pd
import pandas as pd
# Creating the Series
sr = pd.Series(['New York', 'Chicago', 'Toronto', 'Lisbon', 'Rio'])
# Create the Index
index_ = ['City 1', 'City 2', 'City 3', 'City 4', 'City 5']
# set the index
sr.index = index_
# Print the series
print(sr)
Output :
City 1 New York
City 2 Chicago
City 3 Toronto
City 4 Lisbon
City 5 Rio
dtype: object
Now we will use Series.replace()
function to replace the old values with the new ones using a list.
# replace the old ones in the list with
# the new values
result = sr.replace(to_replace = ['New York', 'Rio'], value = ['London', 'Brisbane'])
# Print the result
print(result)
Output :
City 1 London
City 2 Chicago
City 3 Toronto
City 4 Lisbon
City 5 Brisbane
dtype: object
As we can see in the output, the Series.replace()
function has successfully replaced the old value with the new one using the list.