Determine Period Index and Column for DataFrame in Pandas
Last Updated :
11 Jun, 2021
Improve
In Pandas to determine Period Index and Column for Data Frame, we will use the pandas.period_range() method. It is one of the general functions in Pandas that is used to return a fixed frequency PeriodIndex, with day (calendar) as the default frequency.
Syntax: pandas.to_numeric(arg, errors=’raise’, downcast=None)
Parameters:
start : Left bound for generating periods
end : Right bound for generating periods
periods : Number of periods to generate
freq : Frequency alias
name : Name of the resulting PeriodIndexReturns: PeriodIndex
Example 1:
import pandas as pd
course = ["DBMS", "DSA", "OOPS",
"System Design", "CN", ]
# pass the period and starting index
webinar_date = pd.period_range('2020-08-15', periods=5)
# Determine Period Index and Column
# for DataFrame
df = pd.DataFrame(course, index=webinar_date, columns=['Course'])
df
Output:

Example 2:
import pandas as pd
day = ["Sun", "Mon", "Tue",
"Wed", "Thurs", "Fri", "Sat"]
# pass the period and starting index
daycode = pd.period_range('2020-08-15', periods=7)
# Determine Period Index and Column for DataFrame
df = pd.DataFrame(day, index=daycode, columns=['day'])
df
Output:

Example 3:
import pandas as pd
Team = ["Ind", "Pak", "Aus"]
# pass the period and starting index
match_date = pd.period_range('2020-08-01', periods=3)
# Determine Period Index and Column for DataFrame
df = pd.DataFrame(Team, index=match_date, columns=['Team'])
df
Output:
